相关习题
 0  350716  350724  350730  350734  350740  350742  350746  350752  350754  350760  350766  350770  350772  350776  350782  350784  350790  350794  350796  350800  350802  350806  350808  350810  350811  350812  350814  350815  350816  350818  350820  350824  350826  350830  350832  350836  350842  350844  350850  350854  350856  350860  350866  350872  350874  350880  350884  350886  350892  350896  350902  350910  366461 

科目: 来源: 题型:

【题目】请认真阅读下面的数学小探究系列,完成所提出的问题:

(1)探究1,如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,过点D做BC边上的高DE,则DE与BC的数量关系是   ,△BCD的面积为   

(2)探究2,如图②,在一般的Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,请用含a的式子表示△BCD的面积,并说明理由;

(3)探究3:如图③,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,试探究用含a的式子表示△BCD的面积,要有探究过程.

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.

方法①:   

方法②:   

(2)根据(1)写出一个等式:   

(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;

(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为( )

A.
B.2
C. π
D. π

查看答案和解析>>

科目: 来源: 题型:

【题目】一次函数y=﹣x+1(0≤x≤10)与反比例函数y= (﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1 , y1),(x2 , y2)是图象上两个不同的点,若y1=y2 , 则x1+x2的取值范围是( )

A.﹣ ≤x≤1
B.﹣ ≤x≤
C.﹣ ≤x≤
D.1≤x≤

查看答案和解析>>

科目: 来源: 题型:

【题目】已知方程组的解x为非正数,y为负数.

(1)求a的取值范围;

(2)化简∣a-3+a+2∣;

(3)a的取值范围内,m是最大的整数,n是最小的整数,求(m+n)m-n的值;

(4)在a的取值范围内,当a取何整数时,不等式2ax+x>2a+1的解为x<1.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.

(1)求抛物线的解析式;
(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某商店决定购进AB两种纪念品.若购进A种纪念品8件,B种纪念品3件,需要95元;若购进A种纪念品5件,B种纪念品6件,需要80元.

1)求购进AB两种纪念品每件各需多少元?

2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?

3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D的切线分别交AB,AC的延长线于E,F,连接BD.

(1)求证:AF⊥EF;
(2)若AC=6,CF=2,求⊙O的半径.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图①,△ABC是等边三角形,D、E分别为边BC和AC上的点,且BD=CE,过D作BE的平行线,过E作BC的平行线,它们交于点F,连接AF.

(1)求证:△ABE≌△CAD;

(2)试判断△ADF的形状,并说明理由;

(3)若将D、E分别移为边CB的延长线和AC的延长线上的点,其它条件不变(如图②),则△ADF的形状是否改变,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.

(1)求证:四边形ABCD是菱形;
(2)若CD=3,BD=2 ,求四边形ABCD的面积.

查看答案和解析>>

同步练习册答案