相关习题
 0  350758  350766  350772  350776  350782  350784  350788  350794  350796  350802  350808  350812  350814  350818  350824  350826  350832  350836  350838  350842  350844  350848  350850  350852  350853  350854  350856  350857  350858  350860  350862  350866  350868  350872  350874  350878  350884  350886  350892  350896  350898  350902  350908  350914  350916  350922  350926  350928  350934  350938  350944  350952  366461 

科目: 来源: 题型:

【题目】抛物线L:y=﹣ (x+t)(x﹣t+4)与x轴只有一个交点,则抛物线L与x轴的交点坐标是

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,转盘被划分成4个相同的小扇形,并分别标上数字1,2,3,4,分别转动两次转盘,转盘停止后,指针所指向的数字作为直角坐标系中M点的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,认为指向左侧扇形的数字,则点M落在直线y=x的下方的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=( )

A.4
B.5
C.4
D.6

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读与理解:

如图,一只甲虫在5×5的方格(每个方格边长均为1)上沿着网格线爬行.若我们规定:在如图网格中,向上(或向右) 爬行记为“+”,向下(或向左) 爬行记为“﹣”,并且第一个数表示左右方向,第二个数表示上下方向.

例如:从AB记为:A→B(+1,+4),从DC记为:D→C(﹣1,+2).

思考与应用:

(1)图中A→C(      ),B→C(      ),D→A(      

(2)若甲虫从AP的行走路线依次为:(+3,+2)→(+1,+3)→(+1,﹣2),请在图中标出P的位置.

(3)若甲虫的行走路线为A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),请计算该甲虫走过的总路程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线y= x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).

(1)求抛物线F1所表示的二次函数的表达式及顶点Q的坐标;
(2)在抛物线上是否存在点P,使△BPC的内心在y轴上,若存在,求出点P的坐标,若不存在写出理由;
(3)直线y=kx﹣6与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】菱形ABCD中,两条对角线AC,BD相交于点O,∠MON+∠BCD=180°,∠MON绕点O旋转,射线OM交边BC于点E,射线ON交边DC于点F,连接EF.
(1)如图1,当∠ABC=90°时,△OEF的形状是

(2)如图2,当∠ABC=60°时,请判断△OEF的形状,并说明理由;

(3)在(1)的条件下,将∠MON的顶点移到AO的中点O′处,∠MO′N绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M交直线BC于点E,射线O′N交直线CD于点F,当BC=4,且 = 时,直接写出线段CE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABDE、CDFI、EFGH的面积分别为25、9、16,△AEH、△BDC、△GFI的面积分别为S1、S2、S3,则S1+S2+S3=_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,AB=AC,BDAC于D,CEAB于E,BD、CE相交于F.

求证:AF平分∠BAC.

【答案】证明见解析.

【解析】试题分析:先根据AB=AC,可得∠ABC=ACB,再由垂直,可得90°的角,在BCEBCD中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC再易证ABF≌△ACF,从而证出AF平分∠BAC

试题解析:证明:∵AB=AC(已知)

∴∠ABC=ACB(等边对等角).

BDCE分别是高,

BDAC,CEAB(高的定义).

∴∠CEB=BDC=90°.

∴∠ECB=90°ABC,DBC=90°ACB.

∴∠ECB=DBC(等量代换).

FB=FC(等角对等边)

ABFACF中,

ABFACF(SSS)

∴∠BAF=CAF(全等三角形对应角相等)

AF平分∠BAC.

型】解答
束】
23

【题目】如图,在△ABC中,AC=BC∠C=90°AD△ABC的角平分线,DE⊥AB,垂足为E

1)求证:CD=BE

2)已知CD=2,求AC的长;

3)求证:AB=AC+CD

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于E交AB的延长线于点F.

(1)求证:EF是⊙O的切线;
(2)若AE=6,FB=4,求⊙O的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.

(1)求直线AB和OB的解析式.
(2)求抛物线的解析式.
(3)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.问△BOD的面积是否存在最大值?若存在,求出这个最大值并写出此时点D的坐标;若不存在说明理由.

查看答案和解析>>

同步练习册答案