相关习题
 0  351076  351084  351090  351094  351100  351102  351106  351112  351114  351120  351126  351130  351132  351136  351142  351144  351150  351154  351156  351160  351162  351166  351168  351170  351171  351172  351174  351175  351176  351178  351180  351184  351186  351190  351192  351196  351202  351204  351210  351214  351216  351220  351226  351232  351234  351240  351244  351246  351252  351256  351262  351270  366461 

科目: 来源: 题型:

【题目】“小组合作学习”成为我区推动课堂教学改革,打造自主高效课堂的重要举措.某中学从全校学生中随机抽取100人作为样本,对“小组合作学习”实施前后学生的学习兴趣变化情况进行调查分析,统计如下:
请结合图中信息解答下列问题:
(1)小组合作学习前学生学习兴趣为“高”的所占的百分比为
(2)补全小组合作学习后学生学习兴趣的统计图;
(3)通过“小组合作学习”前后学生学习兴趣的对比,请你估计全校2000名学生中学习兴趣获得提高的学生有多少人?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,A、B两点分别在x轴和y轴上,OA=1,OB= ,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1 , 连接A1B1 , 再过A1B1中点C2作x轴和y轴的垂线,照此规律依次作下去,则点Cn的坐标为

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为

查看答案和解析>>

科目: 来源: 题型:

【题目】(8分)如图,在ABCD中,BCD=120°,分别延长DC、BC到点E,F,使得BCE和CDF都是正三角形.

(1)求证:AE=AF;

(2)求EAF的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②依此规律,第18次翻转后点C的纵坐标是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,E,F分别是ABCD的边AD,BC上的点,EF=6,DEF=60°,将四边形EFCD沿EF翻折得到EFC′D′,ED′BC于点C,则GEF的周长为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】已知△ABC,点D、F分别为线段AC、AB上两点,连接BD、CF交于点E.

(1)BD⊥AC,CF⊥AB,若BE=4,CE=2,求CD:BF;

(2)BD平分∠ABC,CF平分∠ACB,如图2所示,猜想∠BEC∠A的数量关系;并说明理由.

(3)在(2)的条件下,若∠A=60°,试说明:BC=BF+CD.

查看答案和解析>>

科目: 来源: 题型:

【题目】如果一个正整数能表示成两个连续偶数的平方差,那么这个正整数为“神秘数”.

如:

因此,4,12,20这三个数都是神秘数.

(1)282012这两个数是不是神秘数?为什么?

(2)设两个连续偶数为(其中为非负整数),由这两个连续偶数构造的神秘数是4的倍数,请说明理由.

(3)两个连续奇数的平方差(取正数)是不是神秘数?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,求证:∠ACD=∠B;

(2)如图,在Rt△ABC中,∠C=90°,D、E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状?并说明理由?

(3)如图,在Rt△ABCRt△DBE中,∠C=90°,∠E=90°,点C,B,E在同一直线上,若AB⊥BD,AB=BD,则CEAC,DE有什么等量关系,并证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)已知2x﹣y=8,求代数式[x2+y2﹣(x﹣y)2+2y(x﹣y)]÷4y的值.

(2)阅读下列材料:常用分解因式的方法有提取公因式法、公式法,但有部分多项式只单纯用上述方法就无法分解,如x2﹣2xy+y2﹣16,我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解.过程如下:x2﹣2xy+y2﹣16=(x﹣y)2﹣16=(x﹣y+4)(x﹣y﹣4)这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:

已知a,b,c分别是△ABC三边的长,且2a2+b2+c2﹣2a(b+c)=0请判断△ABC的形状,并说明理由.

查看答案和解析>>

同步练习册答案