科目: 来源: 题型:
【题目】如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需( )根火柴.
![]()
A. 156 B. 157 C. 158 D. 159
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于
AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则DE等于( ) ![]()
A.2
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,BE平分∠ABC,交AC边于点E,ED⊥AB,垂足为D.若△ABC的周长为12,△ADE的周长为6,则BC的长为( )
![]()
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目: 来源: 题型:
【题目】已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是( ) ①m是无理数;
②m是方程m2﹣12=0的解;
③m满足不等式组
;
④m是12的算术平方根.
A.①②
B.①③
C.③
D.①②④
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读下列解答过程:如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.
![]()
解:过点P作PE∥AB.
∵AB∥CD,
∴PE∥AB∥CD(平行于同一条直线的两条直线互相平行).
∴∠1+∠A=180°(两直线平行,同旁内角互补),
∠2+∠C=180°(两直线平行,同旁内角互补).
∴∠1+∠A+∠2+∠C=360°.
又∵∠APC=∠1+∠2,
∴∠APC+∠A+∠C=360°.
如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A,∠C之间的关系.
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)如图,以△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,试判断△ABC与△AEG面积之间的关系,并说明理由。
![]()
(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米?![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路.如:在图1中,若
是
的平分线
上一点,点
在
上,此时,在
截取
,连接
,根据三角形全等的判定
,容易构造出全等三角形⊿
和⊿
,参考上面的方法,解答下列问题:
如图2,在非等边⊿
中,
,
分别是
的平分线,且
交于点
.求证:
.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】仔细阅读材料,再尝试解决问题:
完全平方式
以及
的值为非负数的特点在数学学习中有广泛的应用,比如探求
的最大(小)值时,我们可以这样处理:
解:原式 =
.
因为无论
取什么数,都有
的值为非负数,所以
的最小值为0;此时
时,进而
的最小值是
;所以当
时,原多项式的最小值是
.
请根据上面的解题思路,探求:
⑴.多项式
的最小值是多少,并写出对应的
的取值;
⑵.多项式
的最大值是多少,并写出对应的
的取值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图:
![]()
(1)如果∠1=∠B,那么_______∥_______,根据是__________________________;
(2)如果∠3=∠D,那么_______∥_______,根据是__________________________;
(3)如果要使BE∥DF,必须∠1=∠_______,根据是_________________________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣3与x轴交于点A(1,0)和点B,与y轴交于点C,且其对称轴l为x=﹣1,点P是抛物线上B,C之间的一个动点(点P不与点B,C重合).![]()
(1)直接写出抛物线的解析式;
(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PB⊥NB,且PB=NB的关系,请求出点P的坐标;
(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值;若不存在,请说明理由.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com