相关习题
 0  351499  351507  351513  351517  351523  351525  351529  351535  351537  351543  351549  351553  351555  351559  351565  351567  351573  351577  351579  351583  351585  351589  351591  351593  351594  351595  351597  351598  351599  351601  351603  351607  351609  351613  351615  351619  351625  351627  351633  351637  351639  351643  351649  351655  351657  351663  351667  351669  351675  351679  351685  351693  366461 

科目: 来源: 题型:

【题目】下面是小东设计的“作边上的高线”的尺规作图过程.

已知:.

求作:边上的高线.

作法:如图,

①以点为圆心,的长为半径作弧,以点为圆心,的长为半径作弧,两弧在下方交于点

②连接于点.

所以线段边上的高线.

根据小东设计的尺规作图过程,

(1)使用直尺和圆规,补全图形;(保留作图痕迹)

(2)完成下面的证明.

证明:∵   

∴点分别在线段的垂直平分线上(  )(填推理的依据).

垂直平分线段.

∴线段边上的高线.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC的三边ABBCCA长分别是203040,其三条角平分线将△ABC分为三个三角形,则SABOSBCOSCAO等于( )

A. 111

B. 123

C. 234

D. 345

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.

(1)求证:OE=OF;
(2)若EF⊥AC,△BEC的周长是10,求ABCD的周长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,ABC ,∠ABCACB的平分线交于点O,过点OEFBC,AB于点E,AC于点F.

(1)ABC=40°,∠ACB=60°,BOE+COF的度数;

(2)AEF的周长为8 cm,BC=4 cm,ABC的周长.

查看答案和解析>>

科目: 来源: 题型:

【题目】若我们规定三角“”表示为:abc;方框“”表示为:(xm+yn).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:

(1)计算:= ______ ;

(2)代数式为完全平方式,则k= ______ ;

(3)解方程:=6x2+7.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=(
A.5
B.4
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,中,点边上,.给出下列三组条件(每组条件中的线段的长度已知):①;②;③;能使唯一确定的条件的序号为(

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,中,平分于点于点,如果,那么的长为________的长为_______.

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为_______

(2)(4xy)2=9(4x+y)2=169,求xy的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】若我们规定三角“”表示为:abc;方框“”表示为:(xm+yn).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:

(1)计算:= ______ ;

(2)代数式为完全平方式,则k= ______ ;

(3)解方程:=6x2+7.

查看答案和解析>>

同步练习册答案