科目: 来源: 题型:
【题目】如图,平面直角坐标系中,O为坐标原点,抛物线y=﹣
ax2+
ax+3a(a≠0)与x轴交于A和点B(A在左,B在右),与y轴的正半轴交于点C,且OB=OC.![]()
(1)求抛物线的解析式;
(2)若D为OB中点,E为CO中点,动点F在y轴的负半轴上,G在线段FD的延长线上,连接GE、ED,若D恰为FG中点,且S△GDE=
,求点F的坐标;
(3)在(2)的条件下,动点P在线段OB上,动点Q在OC的延长线上,且BP=CQ.连接PQ与BC交于点M,连接GM并延长,GM的延长线交抛物线于点N,连接QN、GP和GB,若角满足∠QPG﹣∠NQP=∠NQO﹣∠PGB时,求NP的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点O为正方形ABCD对角线的交点,点E,F分别在DA和CD的延长线上,且AE=DF,连接BE,AF,延长FA交BE于G.![]()
(1)试判断FG与BE的位置关系,并证明你的结论;
(2)连接OG,求∠OGF的度数;
(3)若AE=
,tan∠ABG=
,求OG的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.![]()
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】图1、图2中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.
(1) 如图1,线段AN与线段BM是否相等?证明你的结论;
(2) 如图2,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.
图1 图2
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点
,
,
三点.
(1)在平面直角坐标中画出
,求
的面积
(2)在
轴上是否存在一点
使得
的面积等于
的面积?若存在,求出点
坐标;若不存在,说明理由.
(3)如果在第二象限内有一点
,用含
的式子表示四边形
的面积;
(4)且四边形
的面积是
的面积的三倍,是否存在点
,若存在,求出满足条件的
点坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了
淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养
天的总成本为
万元;放养
天的总成本为
万元(总成本=放养总费用+收购成本).
(1)设每天的放养费用是
万元,收购成本为
万元,求
和
的值;
(2)设这批淡水鱼放养
天后的质量为
(
),销售单价为
元/
.根据以往经验可知:
与
的函数关系为
;
与
的函数关系如图所示.![]()
①分别求出当
和
时,
与
的函数关系式;
②设将这批淡水鱼放养
天后一次性出售所得利润为
元,求当
为何值时,
最大?并求出最大值.(利润=销售总额-总成本)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=﹣
x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.![]()
(Ⅰ)求抛物线的解析式及点D的坐标;
(Ⅱ)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;
(Ⅲ)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】若两个二次函数图象的顶点相同,开口大小相同,但开口方向相反,则称这两个二次函数为“对称二次函数”.
(1)请写出二次函数y=2(x﹣2)2+1的“对称二次函数”;
(2)已知关于x的二次函数y1=x2﹣3x+1和y2=ax2+bx+c,若y1﹣y2与y1互为“对称二次函数”,求函数y2的表达式,并求出当﹣3≤x≤3时,y2的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com