相关习题
 0  351669  351677  351683  351687  351693  351695  351699  351705  351707  351713  351719  351723  351725  351729  351735  351737  351743  351747  351749  351753  351755  351759  351761  351763  351764  351765  351767  351768  351769  351771  351773  351777  351779  351783  351785  351789  351795  351797  351803  351807  351809  351813  351819  351825  351827  351833  351837  351839  351845  351849  351855  351863  366461 

科目: 来源: 题型:

【题目】平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).

发现:如图2,当点P恰好落在BC边上时,求a的值即阴影部分的面积;
拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.
探究:当半圆K与矩形ABCD的边相切时,直接写出sinα的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直角坐标系中,Rt△AOB的两条直角边OAOB分别在x轴的负半轴,y轴的负半轴上,且OA=2OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO

1)写出点ABCD的坐标;

2)求点A和点C之间的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两家蓝莓采摘园的草莓品质相同,销售价格都是每千克30元,“五一”假期,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园购买60元的门票,采摘的蓝莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘的蓝莓超过10千克后,超过部分五折优惠,优惠期间,设某游客的蓝莓采摘量为(千克),在甲采摘园所需总费用为(元),在乙采摘园所需总费用为(元).

1)当采摘量超过10千克时,求的关系式;

2)若要采摘40千克蓝莓,去哪家比较合算?请计算说明.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=2.Rt△AB′C′可以看作是由Rt△ABCA点逆时针方向旋转60°得到的,求线段 B′C的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.

(1)求证:AE与⊙O相切;
(2)当BC=4,AC=6,求⊙O的半径.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市为了节约用水,采用分段收费标准.若某户居民每月应交水费y()与用水量x()之间关系的图象如图,根据图象回答:

(1)该市自来水收费时,若使用不足5吨,则每吨收费多少元?超过5吨部分每吨收费多少元?

(2)若某户居民每月用水3.5吨,应交水费多少元?若某月交水费17元,该户居民用水多少吨?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,BAC=90°AC=2AB,点DAC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与AD重合,连接BEEC

试猜想线段BEEC的数量及位置关系,并证明你的猜想.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:线段

求作:ABC,使

【答案】答案见解析

【解析】试题分析:先画出与相等的角,再画出的长,连接,则即为所求三角形.

试题解析:如图所示:①先画射线BC

②以α的顶点为圆心,任意长为半径画弧,分别交α的两边交于为A′,C

③以相同长度为半径,B为圆心,画弧,BC于点F,F为圆心,CA为半径画弧,交于点E

④在BF上取点C,使CB=a,以B为圆心,c为半径画圆交BE的延长线于点A,连接AC

结论:△ABC即为所求三角形.

型】解答
束】
15

【题目】已知:线段 ,求作: ,使

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.

(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案