相关习题
 0  351827  351835  351841  351845  351851  351853  351857  351863  351865  351871  351877  351881  351883  351887  351893  351895  351901  351905  351907  351911  351913  351917  351919  351921  351922  351923  351925  351926  351927  351929  351931  351935  351937  351941  351943  351947  351953  351955  351961  351965  351967  351971  351977  351983  351985  351991  351995  351997  352003  352007  352013  352021  366461 

科目: 来源: 题型:

【题目】在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k0)的图象经过点(1,0)和(0,2).

(1)当﹣2x3时,求y的取值范围;

(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,己知△ABC,任取一点O,连AO,BO,CO,并取它们的中点D,E,F,得△DEF,则下列说法正确的个数是( ) ①△ABC与△DEF是位似图形; ②△ABC与△DEF是相似图形;
③△ABC与△DEF的周长比为1:2;④△ABC与△DEF的面积比为4:1.

A.1
B.2
C.3
D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1

(1)当∠A为70°时,

∵∠ACD -∠ABD=∠____________

∴∠ACD -∠ABD=______________°

∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线

∴∠A1CD -∠A1BD=(∠ACD-∠ABD)

∴∠A1=___________°;

(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An 的数量关系____________;

(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=  

(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q —∠A1的值为定值.

其中有且只有一个是正确的,请写出正确的结论,并求出其值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A23),点B﹣21),在x轴上存在点PAB两点的距离之和最小,则P点的坐标是

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等腰RtABCBAC=90°AB=AC,点DABC内部一点,连接ADBDCD,点HBD中点,连接AH,且BAH=∠ACD

(1)如图1,若ADB=90°,求证:DAH=45°

(2)如图2,若ADB90°(1)问中的结论是否成立,若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】5张边长为2的正方形纸片,4张边长分别为23的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为

A. 6B. 7C. 8D. 9

查看答案和解析>>

科目: 来源: 题型:

【题目】母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.
(1)求A、B两种礼盒的单价分别是多少元?
(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?
(3)根据市场行情,销售一个A种礼盒可获利10元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】随着出行方式的多样化,某地区打车有三种乘车方式,收费标准如下(假设打车的平均车速为30千米/小时):

网约出租车

网约顺风车

网约专车

3千米以内:12

1.5/千米

2/千米

超过3千米的部分:2.4/千米

0.5/分钟

0.6/分钟

(如:乘坐6千米,耗时12分钟,网约出租车的收费为:12+2.4×6-3=19.2(元);网约顺风车的收费为:6×1.5+12×0.5=15(元);网约专车的收费为:6×2+12×0.6=19.2(元))

请据此信息解决如下问题:

1)王老师乘车从纵棹园去汽车站,全程8千米,如果王老师乘坐网约出租车,需要支付的打车费用为______元;

2)李校长乘车从纵掉园去生态园,乘坐网约顺风车比乘坐网约出租车节省了2元.求从纵棹园去生态园的路程;

3)网约专车为了和网约顺风车竞争客户,分别推出了优惠方式:网约顺风车对于乘车路程在5千米以上(含5千米)的客户每次收费立减6元;网约专车打车车费一律七五折优惠.对采用哪一种打车方式更合算提出你的建议.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.

(1)分别求直线BC和抛物线的解析式(关系式);
(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读下面材料:小明遇到这样一个问题:

如图1,ABC,B=2C,ADBC于点D,求证:BC=AB+2BD.

小明利用条件ADBC,CD上截取DH=BD,如图2,连接AH,既构造了等腰ABH,又得到BH=2BD,从而命题得证。

(1)根据阅读材料,证明:BC=AB+2BD

(2)参考小明的方法,解决下面的问题:

如图3,ABC,BAC=90°,ABD=BCE,ABC=DCE,请探究ADBE的数量关系,并说明理由。

查看答案和解析>>

同步练习册答案