相关习题
 0  351895  351903  351909  351913  351919  351921  351925  351931  351933  351939  351945  351949  351951  351955  351961  351963  351969  351973  351975  351979  351981  351985  351987  351989  351990  351991  351993  351994  351995  351997  351999  352003  352005  352009  352011  352015  352021  352023  352029  352033  352035  352039  352045  352051  352053  352059  352063  352065  352071  352075  352081  352089  366461 

科目: 来源: 题型:

【题目】已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).

(1)四边形EFGH的形状是_____,证明你的结论;

(2)当四边形ABCD的对角线满足_____条件时,四边形EFGH是矩形(不证明)

(3)你学过的哪种特殊四边形的中点四边形是矩形?_____(不证明)

查看答案和解析>>

科目: 来源: 题型:

【题目】下列命题中,正确的个数是 ( )

①若三条线段的比为1:1:,则它们组成一个等腰直角三角形;②两条对角线相等的平行四边形是矩形;③对角线互相垂直的四边形是菱形;④有两个角相等的梯形是等腰梯形;⑤一条直线与矩形的一组对边相交,必分矩形为两个直角梯形。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目: 来源: 题型:

【题目】为传承优秀传统文化,某校为各班购进三国演义水浒传注音读本若干套,其中每套三国演义注音读本的价格比每套水浒传注音读本的价格贵60元,用4800元购买水浒传注音读本的套数是用3600元购买三国演义注音读本套数的2倍,求每套水浒传注音读本的价格.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知x=3是方程 的一个根,求k的值和方程其余的根.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着几何部分的学习,小鹏对几何产生了浓厚的兴趣,他最喜欢利用手中的工具画图了如图,作一个,以O为圆心任意长为半径画弧分别交OAOB于点C和点D,将一副三角板如图所示摆放,两个直角三角板的直角顶点分别落在点C和点D,直角边中分别有一边与角的两边重合,另两条直角边相交于点P,连接小鹏通过观察和推理,得出结论:OP平分

你同意小鹏的观点吗?如果你同意小鹏的观点,试结合题意写出已知和求证,并证明.

已知:中,____________________________________

求证:OP平分

查看答案和解析>>

科目: 来源: 题型:

【题目】(8分)如图,在ABC中,C=60°,A=40°.

(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);

(2)求证:BD平分CBA.

查看答案和解析>>

科目: 来源: 题型:

【题目】绿水青山,就是金山银山。某旅游景区为了保护环境,需购买两种型号的垃圾处理设备共台。已知每台型设备日处理能力为吨;每台型设备日处理能力为吨。根据实际情况,要求型设备不多于型设备的倍,且购回的设备日处理能力不低于吨。请你为该景区设计购买设备的方案。

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读材料,回答问题
一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20 海里的圆形区域(包括边界)都属台风区,当轮船到A处时,测得台风中心移到位于点A正南方向B处,且AB=100海里.

(1)若这艘轮船自A处按原速度和方向继续航行,在途中会不会遇到台风?若会,试求轮船最初遇到台风的时间;若不会,说明理由;
(2)现轮船自A处立即提高船速,向位于北偏东60°方向,相距60海里的D港驶去,为使台风到来之前,到达D港,问船速至少应提高多少(提高的船速取整数, ≈3.6)?

查看答案和解析>>

科目: 来源: 题型:

【题目】红星中学计划组织春季研修活动,活动组织负责人从公交公司了解到如下租车信息:

车型

载客量(人/辆)

租金(元/辆)

校方从实际情况出发,决定租用型客车共辆,而且租车费用不超过元。

1)请为校方设计可能的租车方案;

2)在(1)的条件下,校方根据自愿的原则,统计发现有人参加,请问校方应如何租车,且又省钱?

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)阅读理解:

如图①,在ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.

解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将ACD绕着点D逆时针旋转180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三边的关系即可判断.

中线AD的取值范围是

(2)问题解决:

如图②,在ABC中,D是BC边上的中点,DEDF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CFEF;

(3)问题拓展:

如图③,在四边形ABCD中,B+D=180°,CB=CD,BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.

查看答案和解析>>

同步练习册答案