精英家教网 > 初中数学 > 题目详情

【题目】为传承优秀传统文化,某校为各班购进三国演义水浒传注音读本若干套,其中每套三国演义注音读本的价格比每套水浒传注音读本的价格贵60元,用4800元购买水浒传注音读本的套数是用3600元购买三国演义注音读本套数的2倍,求每套水浒传注音读本的价格.

【答案】每套水浒传注音读本的价格为120

【解析】

设每套水浒传注音读本的价格为x元,则每套三国演义注音读本的价格为元,根据数量总价单价结合用4800元购买水浒传注音读本的套数是用3600元购买三国演义注音读本套数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论.

设每套水浒传注音读本的价格为x元,则每套三国演义注音读本的价格为元,

依题意,得:

解得:

经检验,是原分式方程的解,且符合题意,

答:每套水浒传注音读本的价格为120元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,是坐标原点,点分别在轴的正半轴和x轴的正半轴上,的面积为,过点作直线.

1)求点的坐标;

2)点是第一象限直线上一动点,连接.过点,交轴于点D,设点的纵坐标为,点的横坐标为,求的关系式;

3)在(2)的条件下,过点作直线,交轴于点,交直线于点,当时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题的提出:n个平面最多可以把空间分割成多少个部分?
问题的转化:由n上面问题比较复杂,所以我们先来研究跟它类似的一个较简单的问题:
n条直线最多可以把平面分割成多少个部分?
如图1,很明显,平面中画出1条直线时,会得到1+1=2个部分;所以,1条直线最多可以把平面分割成2个部分;
如图2,平面中画出第2条直线时,新增的一条直线与已知的1条直线最多有1个交点,这个交点会把新增的这条直线分成2部分,从而多出2个部分,即总共会得到1+1+2=4个部分,所以,2条直线最多可以把平面分割成4个部分;
如图3,平面中画出第3条直线时,新增的一条直线与已知的2条直线最多有2个交点,这2个交点会把新增的这条直线分成3部分,从而多出3个部分,即总共会得到1+1+2+3=7个部分,所以,3条直线最多可以把平面分割成7个部分;
平面中画出第4条直线时,新增的一条直线与已知的3条直线最多有3个交点,这3个交点会把新增的这条直线分成4部分,从而多出4个部分,即总共会得到1+1+2+3+4=11个部分,所以,4条直线最多可以把平面分割成11个部分;…

(1)请你仿照前面的推导过程,写出“5条直线最多可以把平面分割成多少个部分”的推导过程(只写推导过程,不画图);
(2)根据递推规律用n的代数式填空:n条直线最多可以把平面分割成个部分.
问题的解决:借助前面的研究,我们继续开头的问题;n个平面最多可以把空间分割成多少个部分?
首先,很明显,空间中画出1个平面时,会得到1+1=2个部分;所以,1个平面最多可以把空间分割成2个部分;
空间中有2个平面时,新增的一个平面与已知的1个平面最多有1条交线,这1条交线会把新增的这个平面最多分成2部分,从而多出2个部分,即总共会得到1+1+2=4个部分,所以,2个平面最多可以把空间分割成4个部分;
空间中有3个平面时,新增的一个平面与已知的2个平面最多有2条交线,这2条交线会把新增的这个平面最多分成4部分,从而多出4个部分,即总共会得到1+1+2+4=8个部分,所以,3个平面最多可以把空间分割成8个部分;
空间中有4个平面时,新增的一个平面与已知的3个平面最多有3条交线,这3条交线会把新增的这个平面最多分成7部分,从而多出7个部分,即总共会得到1+1+2+4+7=15个部分,所以,4个平面最多可以把空间分割成15个部分;
空间中有5个平面时,新增的一个平面与已知的4个平面最多有4条交线,这4条交线会把新增的这个平面最多分成11部分,而从多出11个部分,即总共会得到1+1+2+4+7+11=26个部分,所以,5个平面最多可以把空间分割成26个部分;…
(3)请你仿照前面的推导过程,写出“6个平面最多可以把空间分割成多少个部分?”的推导过程(只写推导过程,不画图);
(4)根据递推规律填写结果:10个平面最多可以把空间分割成个部分;
(5)设n个平面最多可以把空间分割成Sn个部分,设n﹣1个平面最多可以把空间分割成Sn1个部分,前面的递推规律可以用Sn1和n的代数式表示Sn;这个等式是Sn=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小慧根据学习函数的经验,对函数y=|x1|的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:

1)函数y=|x1|的自变量x的取值范围是   

2)列表,找出yx的几组对应值.其中,b   

x

1

0

2

3

y

b

0

2

3)在平面直角坐标系xoy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;

4)写出该函数的一条性质:   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料,回答问题
一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20 海里的圆形区域(包括边界)都属台风区,当轮船到A处时,测得台风中心移到位于点A正南方向B处,且AB=100海里.

(1)若这艘轮船自A处按原速度和方向继续航行,在途中会不会遇到台风?若会,试求轮船最初遇到台风的时间;若不会,说明理由;
(2)现轮船自A处立即提高船速,向位于北偏东60°方向,相距60海里的D港驶去,为使台风到来之前,到达D港,问船速至少应提高多少(提高的船速取整数, ≈3.6)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为(

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算的结果中,是正数的是( )
A.(﹣2007)1
B.(﹣1)2007
C.(﹣1)×(﹣2007)
D.(﹣2007)÷2007

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某社区计划对面积为400m2的区域进行绿化.经测算,甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,且甲队单独完成比乙队单独完成少用4天.求甲、乙两队每天单独完成绿化的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地区为了进一步缓解交通拥堵问题,决定修建一条长为7千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)在30≤x≤12 0之间时具有一次函数的关系,如下表所示.

x

50

60

90

120

y

40

38

32

26


(1)求y关于x的函数关系式;
(2)后来在修建的过程中计划发生改变,政府决定多修3千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.

查看答案和解析>>

同步练习册答案