科目: 来源: 题型:
【题目】如图,已知数轴上原点为0,点B表示的数为2,A在B的右边,且A与B的距离为5,,动点P从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时动点Q从点A出发,以每秒4个单位长度的速度向左匀速运动。设运动时间为t秒(t>0).
![]()
(1)写出数轴上点A表示的数 ,点P表示的数 (用含t的代数式表示),点Q表示的数(用含t的代数式表示);
(2)问点P与点Q何时到点O的距离相等?
(3)若点D是数轴上一点,点D表示的数是x,是否存在x,使得
?如果存在,请直接写出x的值;如果不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在数轴上原点为O,点P表示的数为30,点Q表示的数为120,甲、乙两只小虫分别从O,P两点出发,沿直线匀速爬向点Q,最终达到点Q.已知甲每分钟爬行60个单位长度,乙每分钟爬行30个单位长度,则在此过程中,甲、乙两只小虫相距10个单位长度时的爬行时间为_________分钟.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(a
,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k关联点”.![]()
(1)求点P(﹣2,3)的“2关联点”P′的坐标;
(2)若a、b为正整数,点P的“k关联点”P′的坐标为(3,6),求出k及点P的坐标;
(3)如图,点Q的坐标为(0,4
),点A在函数y=﹣
(x<0)的图象上运动,且点A是点B的“﹣
关联点”,当线段BQ最短时,求B点坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】在以下证明中的括号内注明理由:
已知:如图,EF⊥CD于F,GH⊥CD于H.求证:∠1=∠3.
![]()
证明:∵EF⊥CD,GH⊥CD(已知),
∴EF∥GH( ).
∴∠1=∠2( ).
∵∠2=∠3( ),
∴∠1=∠3( ).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,⊿ABC的顶点在格点上。 且A(1,-4),B(5,-4),C(4,-1)
【1】画出⊿ABC;
【1】求出⊿ABC 的面积;![]()
【1】若把⊿ABC向上平移2个单位长度,再向左平移4个单位长度得到⊿![]()
B
C
,在图中画出⊿![]()
B
C
,并写出B
的坐标。
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BAO=30°.
(1)求AB的长度;
(2)以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点D.求证:BD=OE;
(3)在(2)的条件下,连接DE交AB于F.求证:F为DE的中点.
![]()
![]()
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】观察下列式子的因式分解做法:
①x2-1=(x-1)(x+1);
②x3﹣1
=x3﹣x+x﹣1
=x(x2﹣1)+x﹣1
=x(x﹣1)(x+1)+(x﹣1)
=(x﹣1)[x(x+1)+1]
=(x﹣1)(x2+x+1);
③x4﹣1
=x4﹣x+x﹣1
=x(x3﹣1)+x﹣1
=x(x﹣1)(x2+x+1)+(x﹣1)
=(x﹣1)[x(x2+x+1)+1]
=(x﹣1)(x3+x2+x+1);
…
(1)模仿以上做法,尝试对x5﹣1进行因式分解;
(2)观察以上结果,猜想xn﹣1= ;(n为正整数,直接写结果,不用验证)
(3)根据以上结论,试求45+44+43+42+4+1的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.![]()
(1)求证:DM=DA;
(2)如图②,点G在BE上,且∠BDG=∠C.求证:△DEG∽△ECF;
(3)在(2)的条件下,已知EF=2,CE=3,求GE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】从2017年起,昆明将迎来“高铁时代”,这就意味着今后昆明的市民外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从昆明到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为________千米;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com