相关习题
 0  352278  352286  352292  352296  352302  352304  352308  352314  352316  352322  352328  352332  352334  352338  352344  352346  352352  352356  352358  352362  352364  352368  352370  352372  352373  352374  352376  352377  352378  352380  352382  352386  352388  352392  352394  352398  352404  352406  352412  352416  352418  352422  352428  352434  352436  352442  352446  352448  352454  352458  352464  352472  366461 

科目: 来源: 题型:

【题目】1)阅读以下内容:

已知实数x,y满足x+y=2,且求k的值.

三位同学分别提出了以下三种不同的解题思路:

甲同学:先解关于x,y的方程组,再求k的值.

乙同学:先将方程组中的两个方程相加,再求k的值.

丙同学:先解方程组,再求k的值.

(2)你最欣赏(1)中的哪种思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价.

(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路、运算的简洁性,以及你依此可以总结什么解题策略等等)

请先在以下相应方框内打勾,再解答相应题目.

查看答案和解析>>

科目: 来源: 题型:

【题目】从﹣4,﹣3,﹣2,﹣101345这九个数中,随机抽取一个数,记为a,则数a使关于x的不等式组至少有四个整数解,且关于x的分式方程1有非负整数解的概率是(  )

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知二次函数y= x2+ x﹣ 的图象与x轴交于点 A,B,交 y 轴于点 C,抛物线的顶点为 D.

(1)求抛物线顶点 D 的坐标以及直线 AC 的函数表达式;
(2)点 P 是抛物线上一点,且点P在直线 AC 下方,点 E 在抛物线对称轴上,当△BCE 的周长最小时,求△PCE 面积的最大值以及此时点 P 的坐标;
(3)在(2)的条件下,过点 P 且平行于 AC 的直线分别交x轴于点 M,交 y 轴于点N,把抛物线y= x2+ x﹣ 沿对称轴上下平移,平移后抛物线的顶点为 D',在平移的过程中,是否存在点 D',使得点 D',M,N 三点构成的三角形为直角三角形,若存在,直接写出点 D'的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了鼓励市民节约用电,某市对居民用电实行阶梯收费(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家20181月和3月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度(  )

A. 0.5元、0.6 B. 0.4元、0.5 C. 0.3元、0.4 D. 0.6元、0.7

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点AB分别在函数yk10)与函数yk20)的图象上,线段AB的中点Mx轴上,△AOB的面积为4,则k1k2的值为(  )

A.2B.4C.6D.8

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AB=AC,点D是△ABC内一点,AD=BD,且AD⊥BD,连接CD.过点C作CE⊥BC交AD的延长线于点 E,连接BE.过点D作DF⊥CD交BC于点F.

(1)若BD=DE= ,CE= ,求BC的长;
(2)若BD=DE,求证:BF=CF.

查看答案和解析>>

科目: 来源: 题型:

【题目】对任意一个正整数m,如果m=k(k+1),其中k是正整数,则称m为“矩数”,k 为m的最佳拆分点.例如,56=7×(7+1),则56是一个“矩数”,7为56的最佳拆分点.
(1)求证:若“矩数”m是3的倍数,则m一定是6的倍数;
(2)把“矩数”p与“矩数”q的差记为 D(p,q),其中p>q,D(p,q)>0.例如,20=4×5,6=2×3,则 D(20,6)=20﹣6=14.若“矩数”p的最佳拆分点为t,“矩数”q的最佳拆分点为s,当 D(p,q)=30时,求 的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某电器超市销售每台进价分别为2000元、1700元的两种型号的空调,如表是近两周的销售情况:

销售时段

销售数量

销售款

种型号

种型号

第一周

4

5

20500

第二周

5

10

33500

1)求两种型号的空调的销售单价;

2)求近两周的销售利润.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知ABCD,分别探讨下面三个图形中∠AEC与∠EAB,∠ECD之间的关系,请你从所得到的关系中任选一个加以证明.

1)在图1中,∠AEC与∠EAB,∠ECD之间的关系是:________________

2)在图2中,∠AEC与∠EAB,∠ECD之间的关系是:________________

3)在图3中,∠AEC与∠EAB,∠ECD之间的关系是:________________

4)在图______中,求证:________________.(并写出完整的证明过程)

查看答案和解析>>

科目: 来源: 题型:

【题目】为加快5G网络建设,某移动通信公司在山顶上建了一座5G信号通信塔AB,山高BE100米(ABE在同一直线上),点C与点D分别在E的两侧(CED在同一直线上),BECDCD之间的距离1000米,点D处测得通信塔顶A的仰角是30°,点C处测得通信塔顶A的仰角是45°(如图),则通信塔AB的高度约为(  )米.(参考数据:

A.350B.250C.200D.150

查看答案和解析>>

同步练习册答案