科目: 来源: 题型:
【题目】如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆. ![]()
(1)求证:AB是⊙O的切线;
(2)若AC=8,tan∠BAC=
,求⊙O的半径.
查看答案和解析>>
科目: 来源: 题型:
【题目】△ABC的顶点均在边长为1的小正方形网络中的格点上,如图,建立平面直角坐标系,点B在x轴上.
(1)在图中画出△ABC关于x轴对称的△A’B’C’,连接AA’,求证:△AA’C≌△A’AC’;
(2)请在y轴上画点P,使得PB+PC最短.(保留作图痕迹,不写画法)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C. ![]()
(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;
(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E. ![]()
(1)求证:DE是⊙O的切线;
(2)若AE:EB=1:2,BC=6,求AE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知等腰直角△ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径![]()
(1)求证:△APE是等腰直角三角形;
(2)若⊙O的直径为2,求
的值
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点M是BE的中点,连接CM、DM.
![]()
(1)当点D在AB上,点E在AC上时(如图一),求证:DM=CM,DM⊥CM;
(2)当点D在CA延长线上时(如图二)(1)中结论仍然成立,请补全图形(不用证明);
(3)当ED∥AB时(如图三),上述结论仍然成立,请加以证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,小兰用尺规作图作△ABC边AC上的高BH,作法如下:
①分别以点DE为圆心,大于DE的一半长为半径作弧两弧交于F;
②作射线BF,交边AC于点H;
③以B为圆心,BK长为半径作弧,交直线AC于点D和E;
④取一点K使K和B在AC的两侧;
所以BH就是所求作的高.其中顺序正确的作图步骤是( )
![]()
A.①②③④B.④③①②C.②④③①D.④③②①
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,AC∥DF,直线AF分别与直线BD、CE相交于点G,H,∠1=∠2,求证:∠C=∠D.
![]()
解:∵∠1=∠2(已知)
∠1=∠DGH( ),
∴∠2= ( 等量代换 )
∴ ∥ (同位角相等,两直线平行)
∴∠C= (两直线平行,同位角相等)
又∵AC∥DF( )
∴∠D=∠ABG ( )
∴∠C=∠D ( )
查看答案和解析>>
科目: 来源: 题型:
【题目】(6分)△ABC与△A′B′C′在平面直角坐标系中的位置如图.
![]()
(1)分别写出下列各点的坐标:A′ ; B′ ;C′ ;
(2)说明△A′B′C′由△ABC经过怎样的平移得到? .
(3)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为 ;
(4)求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com