科目: 来源: 题型:
【题目】如图:在平面直角坐标系中,抛物线
经过A(—2,—4 ),O(0,0),B(2,0)三点.
(1)求抛物线
的解析式和顶点坐标D.
(2)若使
轴上一点P,使P 到A、D的距离之和最小,求P的坐标.
(3)若抛物线对称轴上一点M,使AM + OM最小,求AM + OM的最小值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图:(1)写出△ABC中点A、点C坐标;(2)画出△ABC绕点A管好逆时针旋转90°后的△AB'C';(3)在(2)的条件下,求点C旋转到C'所经过的路线长。(结果保留
)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图:点P是四边形ABCD外接圆⊙O上的任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD,连接PA,PB,PC,若PA=
,求点A到PB和PC的距离之和AE+AF是多少?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:
![]()
(1)参加这次调查的学生有 人,并根据已知数据补全条形统计图;
(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;
(3)若该校共有800名学生,试估计该校选择“足球”项目的学生有多少人?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知点O在直线AB上,将一副直角三角板的直角顶点放在点O处,其中∠OCD=60°,∠OEF=45°.边OC、OE在直线AB上.
(1)如图(1),若CD和EF相交于点G,则∠DGF的度数是______°;
(2)将图(1)中的三角板OCD绕点O顺时针旋转30°至图(2)位置
①若将三角板OEF绕点O顺时针旋转180°,在此过程中,当∠COE=∠EOD=∠DOF时,求∠AOE的度数;
②若将三角板OEF绕点O以每秒4°的速度顺时针旋转180°,与此同时,将三角板OCD绕点O以每秒1°的速度顺时针旋转,当三角板OEF旋转到终点位置时,三角板OCD也停止旋转.设旋转时间为t秒,当OD⊥EF时,求t的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知关于x、y的方程组
.
(1)当m=2时,请解关于x、y的方程组
;
(2)若关于x、y的方程组
中,x为非负数、y为负数,
①试求m的取值范围;
②当m取何整数时,不等式3mx+2x>3m+2的解为x<1.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的边AB在x轴上,∠ABC=90°,AB=BC,OA=1,OB=4,抛物线
经过A、C两点.
(1)求抛物线的解析式及其顶点坐标;
(2)如图①,点P是抛物线上位于x轴下方的一点,点Q与点P关于抛物线的对称轴对称,过点P、Q分别向x轴作垂线,垂足为点D、E,记矩形DPQE的周长为d,求d的最大值,并求出使d最大值时点P的坐标;
(3)如图②,点M是抛物线上位于直线AC下方的一点,过点M作MF⊥AC于点F,连接MC,作MN∥BC交直线AC于点N,若MN将△MFC的面积分成2:3两部分,请确定M点的坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:
![]()
(1)画出△ABC关于点O成中心对称的图形△A1B1C1;
(2) 将△A1B1C1沿y轴正方向平移5个单位得到△A2B2C2 ,画出△A2B2C2;
(3)若△ABC与△A2B2C2 绕点P旋转重合,则点P的坐标为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场要经营一种新上市的文具,进价为20元∕件.试销阶段发现:当销售价为25元∕件时,每天的销售量是250件,销售价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润
(元)与销售单价
(元)之间的函数关系式.
(2)求销售单价为多少元时,该文具每天的销售利润最大?
(3)在保证销售量尽可能大的前提下,该商场想获得每天2000元的利润,应该将销售价定为多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=8,则四边形ABCD的面积为( )
![]()
A.32B.24C.40D.36
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com