科目: 来源: 题型:
【题目】如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
![]()
(1)求证:△COD是等边三角形;
(2)当a=150°时,试判断△AOD的形状,并说明理由;
(3)探究:当a为多少度时,△AOD是等腰三角形?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
,
,求
的值.
解:根据算术平方根的定义,
由
,得
,所以
①……第一步
根据立方根的定义,
由
,得
②……第二步
由①②解得
……第三步
把
代入
中,得
……第四步
(1)以上解题过程存在错误,请指出错在哪些步骤,并说明错误的原因;
(2)把正确解答过程写出来.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,Rt△AOB绕着一点旋转到△A′OB′的位置,可以看到点A旋转到点A′,OA旋转到OA′,∠AOB旋转到∠A′OB′,这些都是互相对应的点、线段和角.已知∠AOB=30°,∠AOB′=10°,那么点B的对应点是点______;线段OB的对应线段是线段_____;∠A的对应角是______;旋转中心是点_______;旋转的角度是______度.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,3),直线PB交y轴于点D,△AOP的面积为12;
(1)求△COP的面积;
(2)求点A的坐标及p的值;
(3)若△BOP与△DOP的面积相等,求直线BD的函数解析式.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线l1与直线l2:y=
x+3平行,直线l1与x轴的交点的坐标为A(2,0),求:
(1)直线l1的表达式.
(2)直线l1与坐标轴围成的三角形的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校数学研究小组在研究有关二次函数及其图象性质时,发现了一个重要结论:抛物线y=ax2+2x+3(a≠0),当实数a变化时,它们的顶点都在某条直线上.
(1)请你协助探求出这条直线的表达式;
(2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它吗?并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线
轴于点(1,0),直线
轴于点(2,0),直线
轴于点(3,0),…,直线
轴于点(n,0)。函数
的图象与直线
分别交于点
;函数
的图象与直线
分别交于点
。如果
的面积记作
,四边形
的面积记作
,四边形
的面积记作
,…,四边形
的面积记作
,那么
_____________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知菱形ABCD的边长为2,∠B=60°,点P、Q分别是边BC、CD上的动点(不与端点重合),且BP=CQ.
![]()
(1)图中除了△ABC与△ADC外,还有哪些三角形全等,请写出来;
(2)点P、Q在运动过程中,四边形APCQ的面积是否变化,如果变化,请说明理由;如果不变,请求出面积;
(3)当点P在什么位置时,△PCQ的面积最大,并请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AEF,延长EF交边BC于点G,连结AG,CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=
;其中正确的结论有_____.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com