科目: 来源: 题型:
【题目】如图:小刚站在河边的
点处,在河的对面(小刚的正北方向)的
处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了30步到达一棵树
处,接着再向前走了30步到达
处,然后他左转
直行,当小刚看到电线塔、树与自己现处的位置
在一条直线时,他共走了140步.
![]()
(1)根据题意,画出示意图;
(2)如果小刚一步大约50厘米,估计小刚在点
处时他与电线塔的距离,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
的图象与
轴有两个公共点.
(1)求
的取值范围,写出当
取其范围内最大整数时抛物线的解析式;
(2)将(1)中所求得的抛物线记为
,
①求
的顶点
的坐标;
②若当
时,
的取值范围是
,求
的值;
(3)将
平移得到抛物线
,使
的顶点
落在以原点为圆心半径为
的圆上,求点
与
两点间的距离最大时
的解析式,怎样平移
可以得到所求抛物线?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】家乐福超市“端午节”举行有奖促销活动:凡一次性购物满200元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三等奖,奖金依次为48元、40元、32元.一次性购物满200元者,如果不摇奖可返还现金15元.
![]()
(1)摇奖一次,获一等奖的概率是多少?
(2)小明一次性购物满了200元,他是参与摇奖划算还是领15元现金划算,请你帮他算算.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数y=x2﹣2(k+1)x+k2﹣2k﹣3与x轴有两个交点.
(Ⅰ)求k取值范围;
(Ⅱ)当k取最小整数时,此二次函数的对称轴和顶点坐标;
(Ⅲ)将(Ⅱ)中求得的抛物线在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象.请你求出新图象与直线y=x+m有三个不同公共点时m的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①,在平面直角坐标系中,将□ABCD放置在第一象限,且AB∥x轴,直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图②所示,那么AD的长为__________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.
(1)写出y与x中间的函数关系式和自变量
的取值范围;
(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两车从
地出发,匀速驶向
地.甲车以
的速度行驶
后,乙车才沿相同路线行驶.乙车先到达
地并停留
后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离
与乙车行驶时间
之间的函数关系如图所示.下列说法:①乙车的速度是
;②
;③点
的坐标是
;④
.其中说法正确的是_________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB⊥BC,DC⊥BC,AE 平分∠BAD,DE 平分∠ADC,以下结论:①∠AED=90°;②点 E 是 BC 的中点;③DE=BE;④AD=AB+CD;其中正确的是( )
![]()
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在平面直角坐标系中,△ABC的三个顶点分别是A(﹣2,﹣2)、B(﹣4,﹣1)、C(﹣4,﹣4).
(Ⅰ)画出△ABC关于原点O或中心对称的△A1B1C1;
(Ⅱ)作出点A关于x轴的对称点A′,若把点A′向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边).
①在图中画出点A′,并写出点A′坐标 .
②写出a的取值范围为 .
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①,在菱形ABCD中,∠B=60°,M为AB的中点,动点P从点B出发,沿B→C→D的路径运动,到达点D时停止.连接MP,设点P运动的路程为x,MP2=y,若y与x的函数图象大致如图②所示,则菱形ABCD的周长为____________.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com