科目: 来源: 题型:
【题目】如图,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为15,OC边长为3.
![]()
(1)数轴上点A表示的数为 .
(2)将长方形OABC沿数轴水平方向移动,移动后的长方形记为O′A′B′C′(O、A、B、C对应点分别为O′、A′、B′、C′),移动后的长方形O′A′B′C′与原长方形OABC重叠部分的周长记为L.
①当L=10时,移动的距离为 ;
②当L恰好等于原长方形OABC周长的一半时,数轴上点A′表示的数为 .
③设点A的移动距离AA′=x.若D为线段AA′的中点,点E在线段OO′上,且OE=
OO′,当点D,E所表示的数互为相反数时,求x的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】世界杯比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情況记录如下(单位:
):
,
,
,
,
,
,
,
.(假定开始计时时,守门员正好在球门线上)
(1)守门员最后是否回到球门线上?
(2)守门员在这段时间内共跑了多少米?
(3)如果守门员离开球门线的距离超过10米(不包括10米),则对方球员挑射极可能造成破门.请问在这一时间段内,对方球员有几次挑射破门的机会?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知边长为4的正方形ABCD,顶点A与坐标原点重合,一反比例函数图象过顶点C,动点P以每秒1个单位速度从点A出发沿AB方向运动,动点Q同时以每秒4个单位速度从D点出发沿正方形的边DC﹣CB﹣BA方向顺时针折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t.
(1)求出该反比例函数解析式;
(2)连接PD,当以点Q和正方形的某两个顶点组成的三角形和△PAD全等时,求点Q的坐标;
(3)用含t的代数式表示以点Q、P、D为顶点的三角形的面积s,并指出相应t的取值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知如图,
三点在同一直线上,
.
(1)已知点
在直线
上,根据条件,请补充完整图形,并求
的长;
![]()
(2)已知点
在直线
上,
分别是
,
的中点,根据条件,请补充完整图形,并求
的长,直接写出
与
的长存在的数量关系;
![]()
(3)已知点
在直线
上,
分别是
,
的中点,根据条件,请补充完整图形,并求
的长,直接写出
与
的长存在的数量关系.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系的图象如图所示.
![]()
(1)求y关于x的函数解析式,并写出x的取值范围;
(2)当生产这种产品每吨的成本为7万元时,求该产品的生产数量.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图在数轴上A点表示数
,B点表示数
,
、
满足|
|+|
|=0;
![]()
(1)点A表示的数为_____;点B表示的数为_____;
(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),
①当t=1时,甲小球到原点的距离=_____;乙小球到原点的距离=_____.
当t=3时,甲小球到原点的距离=_____;乙小球到原点的距离=_____.
②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.
查看答案和解析>>
科目: 来源: 题型:
【题目】我县某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价贵12元,用12000元购进的科普书本数是用9000元购进的文学书本数的
.那么文学书和科普书的单价各是多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】现有一列数:
,
,0,-22,-(+2),-(-4),请回答下列问题:
(1)其中非负整数是_______________;(2)到原点距离相等的数是________________;
(3)画出数轴,并在数轴上表示这一列数,再用“<”连接起来.
查看答案和解析>>
科目: 来源: 题型:
【题目】小明每天早上7:30从家出发,到距家
的学校上学,一天,小明以
的速度上学,
后小明爸爸发现他发现忘带语文书,爸爸立即带上语文书去追赶小明.
(1)如果爸爸以
的速度追小明,爸爸追上小明时距离学校多远?
(2)如果爸爸刚好能在学校门口追上小明,爸爸的速度是多少?
(3)爸爸以
的速度追赶小明,他把书给小明后及时原路原速返回(交书耽误的时间忽略不计),返回家的时间是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.
![]()
(1)求证:AE=EF;
(2)如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,(1)中的结论是否仍然成立? ;(填“成立”或“不成立”);
(3)如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请证明,若不成立说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com