相关习题
 0  354601  354609  354615  354619  354625  354627  354631  354637  354639  354645  354651  354655  354657  354661  354667  354669  354675  354679  354681  354685  354687  354691  354693  354695  354696  354697  354699  354700  354701  354703  354705  354709  354711  354715  354717  354721  354727  354729  354735  354739  354741  354745  354751  354757  354759  354765  354769  354771  354777  354781  354787  354795  366461 

科目: 来源: 题型:

【题目】如图,ABCEBC上的一点,EC2BE,点DAC的中点,则EFAF_____;若SABC12,则SADFSBEF_____

查看答案和解析>>

科目: 来源: 题型:

【题目】某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.

1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;

2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?

查看答案和解析>>

科目: 来源: 题型:

【题目】20141月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小军为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就每月每户的用水量调价对用水行为改变两个问题进行调查,并把调查结果整理成下面的图1,图2.

小军发现每月每户的用水量在5m3-35m3之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题:

1n =________,小明调查了_____户居民,并补全图1

2)每月每户用水量的中位数落在______之间,众数落在_______之间;

3)如果小明所在的小区有1200户居民,请你估计视调价涨幅采取相应的用水方式改变的居民户数有多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图:有一块余料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm

1)如果把它加工成长方形零件,使长方形的一边在BC上,其余两个顶点分别在ABAC上,设长方形宽xmm,面积为ymm2,那么宽为多少时,其面积最大.最大面积是多少?

(2)若以BC的中点O为原点建立平面直角坐标系,B(-600),AD=BD

求过ABC三点的抛物线解析式;

在此抛物线对称轴上是否存在一点R,使以ABR为顶点的三角形是直角三角形.若存在,请直接写出R点的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知四边形ABCD,B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积为______

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,,OAC上的一点, BC,AB分别切于点C,D, AC相交于点E,连接BO.

(1) 求证:CE2=2DEBO;

(2) BC=CE=6,AE= ,AD= .

查看答案和解析>>

科目: 来源: 题型:

【题目】这是一根起点为0的数轴,现有同学将它弯折,如图所示, 例如:虚线上第一行0,第二行6,第三行21…,第9行的数是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】某数学兴趣小组利用大小不等、颜色各异的正方形硬纸片开展了一次活动,请认真阅读下面的探究片段,完成所提出的问题。

探究1:四边形ABCD是边长为1正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,小明看到图(1)后,很快发现AE=EF,这需要证明AE与EF所在的两个三角形全等,但△ABE与△FCE显然不全等,考虑到点E是BC的中点,引条辅助线尝试就行了,随即小明写出了如下的证明过程:证明:取AB的中点H,连接EH,证明△AHE与△ECF全等即可.

探究2:小明继续探索,把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,如图(2)其它条件不变,结论AE=EF是否成立呢? (填是或否)

小明还想试试,把条件“点E是边BC的中点”改为“点E是边BC延长线上的任意一点”,如图(3)其它条件不变,那么结论AE=EF是否还成立呢? (填是或否),请你选择其中一种完成证明过程给小强看。

探究3:在探究2结论AE=EF成立的情况下,如图(4)所示的平面直角坐标系中,当点E滑动到BC上某处时(不含B、C),点F恰好落在直线y=-2x+3上,求此时点F的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,CAAB,垂足为 AAB=24,AC=12,射线 BMAB,垂足为 B, 一动点 E A点出发以 3 厘米/秒沿射线 AN 运动,点 D 为射线 BM 上一动点, 随着 E 点运动而运动,且始终保持 EDCB,当点 E 经过______秒时,△DEB 与△BCA 全等.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图:在数轴上点A表示数a,B表示数b,C表示数c,a是多项式2x24x+1的一次项系数,b是最小的正整数,单项式x2y4的次数为c.

(1)a=___b=___c=___

(2)若将数轴在点B处折叠,则点A与点C___重合(填“能”或“不能”)

(3)A,B,C开始在数轴上运动,若点C以每秒1个单位长度的速度向右运动,同时,A和点B分别以每秒3个单位长度和2个单位长度的速度向左运功,t分钟过后,若点A与点B之间的距离表示为AB,B与点C之间的距离表示为BC,AB=___,BC=___(用含t的代数式表示)

(4)请问:3ABBC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值。

查看答案和解析>>

同步练习册答案