科目: 来源: 题型:
【题目】初二年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初二学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:
![]()
(1)在这次评价中,一共抽查了 名学生;
(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度;
(3)请将频数分布直方图补充完整;
(4)如果全市有6000名初二学生,那么在试卷评讲课中,“独立思考”的初二学生约有多少人?
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中的某圆上,有弦MN,取MN的中点P,我们规定:点P到某点(直线)的距离叫做“弦中距”,用符号“
”表示.
现请在以W(-3,0)为圆心,半径为2的⊙W圆上,根据以下条件解答所提问题:
(1)已知弦MN长度为2.
①如图1:当MN∥x轴时,直接写出到原点O的
的长度;
②如果MN在圆上运动时,在图2中画出示意图,并直接写出到点O的
的取值范围.
(2)已知点
,点N为⊙W上的一动点,有直线
,求到直线
的
的最大值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=8,AC=6.点D在边AB上,AD=4.5.△ABC的角平分线AE交CD于点F.
![]()
(1)求证:△ACD∽△ABC;
(2)求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,
,
,点
在边
上(与
、
不重合),四边形
为正方形,过点
作
,交
的延长线于点
,连接
,交
于点
,对于下列结论:①
;②四边形
是矩形;③
.其中正确的是( )
![]()
A.①②③B.①②C.①③D.②③
查看答案和解析>>
科目: 来源: 题型:
【题目】如图(一),
为一条拉直的细线,
两点在
上,且
. 若先固定
点,将
折向
,使得
重迭在BP上,如图(二);再从图(二)的
点及与
点重迭处一起剪开,使得细线分成三段,则此三段细线由小到大的长度比为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】若关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根为( )
A.
B.2020C.2019D.2018
查看答案和解析>>
科目: 来源: 题型:
【题目】小明每天早上要到距家1000米的学校上学,一天,小明以80米/分钟的速度出发,5分钟后,小明的爸爸发现他忘带了数学书,于是,爸爸立即以180米/分钟的速度去追赶小明.
(1)若爸爸在途中追上了小明,请问爸爸追上小明用了多长时间?
(2)若爸爸出发2分钟后,小明也发现自己忘带数学书,于是他以100米/分钟往回走,与爸爸在途中相遇了,请问这种情况下爸爸出发多久追上小明?
(3)小明家养了一条聪明伶俐的小狗,小狗跟着爸爸冲出了门,以240米/分钟的速度去追小明,小明看到小狗的一刹那醒悟到自己忘了带数学书,立即以120米/分钟的速度往回返,小狗仍以原速度往爸爸这边跑,跑到爸爸身边又折回往小明身边跑,直到爸爸和小明相遇方停下,随后又跟着爸爸回到家,请问小狗从出门到回家共跑了多少米?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正方形ABCD中,连接BD,点E为CB边的延长线上一点,点F是线段AE的中点,过点F作AE的垂线交BD于点M,连接ME、MC.
(1)根据题意补全图形,猜想
与
的数量关系并证明;
(2)连接FB,判断FB 、FM之间的数量关系并证明.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】点O为直线AB上一点,过点O作射线OC.将一直角三角板的直角顶点放在点O处.
![]()
(1)如图1,若∠BOC=65°,将三角板MON的一边ON与射线OB重合时,则∠MOC= .
(2)如图2,若∠BOC=65°,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,则∠BON= .
(3)如图2,若∠BOC=α,仍然将三角板MON旋转到OC为∠MOB的角平分线的位置,求∠AOM.(写出过程)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com