科目: 来源: 题型:
【题目】已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与BC、DC的延长线交于点E、F,连接EF,设CE=a,CF=b.
(1)如图1,当a=4时,求b的值;
(2)当a=4时,如图2,求出b的值;
(3)如图3,请写出∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.
(1)分别求出这两个函数的解析式;
(2)求的面积;
(3)点在轴上,且是等腰三角形,请直接写出点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
(1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
(2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx(a≠0)过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.
(1)求抛物线的表达式;
(2)求点C的坐标,并求出△ABC的面积;
(3)点P是抛物线上一动点,且位于第四象限,是否存在这样的点P,使得△ABP的面积为△ABC面积的2倍?若存在,求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,为了测量出楼房AC的高度,从距离楼底C处米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形ABCD中,∠A=∠B=90度,E是AB上一点,且AE=BC,∠1=∠2
(1)Rt△ADE与Rt△BEC全等吗?请说明理由;
(2)证明:AB=AD+BC;
(3)△CDE是不是直角三角形?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】2020年日本奥运会的比赛门票开始接受公众预订.下表为日本奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票.
比赛项目 | 票价(元/场) |
男篮 | 1000 |
足球 | 800 |
乒乓球 | 500 |
(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?
(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com