相关习题
 0  357200  357208  357214  357218  357224  357226  357230  357236  357238  357244  357250  357254  357256  357260  357266  357268  357274  357278  357280  357284  357286  357290  357292  357294  357295  357296  357298  357299  357300  357302  357304  357308  357310  357314  357316  357320  357326  357328  357334  357338  357340  357344  357350  357356  357358  357364  357368  357370  357376  357380  357386  357394  366461 

科目: 来源: 题型:

【题目】如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在BC上,且四边形AEFD是平行四边形.

(1)ADBC有何等量关系?请说明理由;

(2)当AB=DC时,求证:四边形AEFD是矩形.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,在△ABC中,∠ABC、∠ACB的平分线相交于点OMN过点O,且MNBC,分别交ABAC于点MN.ODABOEAC.

(1)求证:OD=OE.

(2)OMN的中点,判断△ABC的形状,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线y=﹣x+b分别与x轴、y轴交于A,B两点,点A的坐标为(3,0),过点B的另一条直线交x轴负半轴于点C,且OB:OC=3:1.

(1)求点B的坐标及直线BC对应的函数表达式;

(2)在线段OB上存在点P,使得点P到点B,C的距离相等,试求出点P的坐标;

(3)如果在x轴上方存在点D,使得以点A,B,D为顶点的三角形与△ABC全等,请直接写出点D的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用画树状图列表列举等方法给出分析过程)

查看答案和解析>>

科目: 来源: 题型:

【题目】为使中华传统文化教育更具有实效性,军宁中学开展以我最喜爱的传统文化种类为主题的调查活动,围绕在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:

(1)本次调查共抽取了多少名学生?

(2)通过计算补全条形统计图;

(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)计算:

(2)x2﹣4x+1=0;

(3)解下列不等式组,并把其解集在所给的数轴(如图)上表示出来:

查看答案和解析>>

科目: 来源: 题型:

【题目】两个正三角形内接于一个半径为R的O,设它的公共面积为S,则2S与的大小关系是___

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线经过A(2,0). 设顶点为点P,与x轴的另一交点为点B.

(1)求b的值,求出点P、点B的坐标;

(2)如图,在直线 上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D的坐

标;若不存在,请说明理由;

(3)在x轴下方的抛物线上是否存在点M,使AMP≌△AMB?如果存在试举例验证你的猜想;如果不存在,试说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示;慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示.根据图象进行以下研究.

解读信息:

(1)甲、乙两地之间的距离为   km;

(2)快车的速度是   km/h,慢车的速度是   km/h.

(3)求线段AB与线段OC的解析式;

(4)快、慢两车在何时相遇?相遇时距离乙地多远?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点PPDAC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.

(1)用含t的代数式表示线段DC的长;

(2)当点Q与点C重合时,求t的值;

(3)设△PDQ与△ABC重叠部分图形的面积为S,求St之间的函数关系式;

(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.

查看答案和解析>>

同步练习册答案