科目: 来源: 题型:
【题目】我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形。例如:某三角形三边长分别是5,6和8,因为,所以这个三角形是常态三角形。
(1)若△ABC三边长分别是2,和4,则此三角形_________常态三角形(填“是”或“不是”);
(2)若Rt△ABC是常态三角形,则此三角形的三边长之比为__________________(请按从小到大排列);
(3)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为AB的中点,连接CD,若△BCD是常态三角形,求△ABC的面积。
查看答案和解析>>
科目: 来源: 题型:
【题目】两个一次函数l1、l2的图象如图:
(1)分別求出l1、l2两条直线的函数关系式;
(2)求出两直线与y轴围成的△ABP的面积;
(3)观察图象:请直接写出当x满足什么条件时,l1的图象在l2的下方.
查看答案和解析>>
科目: 来源: 题型:
【题目】根据下列要求,解答相关问题.
(1)请补全以下求不等式﹣2x2﹣4x≥0的解集的过程
①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;并在下面的坐标系中(图1)画出二次函数y=﹣2x2﹣4x的图象(只画出图象即可).
②求得界点,标示所需,当y=0时,求得方程﹣2x2﹣4x=0的解为______;并用锯齿线标示出函数y=﹣2x2﹣4x图象中y>0的部分.
③借助图象,写出解集:由所标示图象,可得不等式﹣2x2﹣4x>0的解集为_______.
(2)利用(1)中求不等式解集的步骤,求不等式x2﹣2x+1≥4的解集.
①构造界点,画出图象;
②求得界点,标志所需;
③借助图象,写出解集
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在一次夏令营活动中,小明从营地A出发,沿北偏东60°方向走了m 到达点B,然后再沿北偏西30°方向走了50m到达目的地C。
(1)求A、C两点之间的距离;
(2)确定目的地C在营地A的北偏东多少度方向。
查看答案和解析>>
科目: 来源: 题型:
【题目】【提出问题】
(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.
【类比探究】
(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
【拓展延伸】
(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC内接于⊙O,且AB=BC.AD是⊙O的直径,AC、BD交于点E,P为DB延长线上一点,且PB=BE.
(1)求证:△ABE∽△DBA;
(2)试判断PA与⊙O的位置关系,并说明理由;
(3)若E为BD的中点,求tan∠ADC的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,△ABC的位置如图所示.
(1)分别写出以下顶点的坐标:A( , );B( , ) ;C( , ).
(2)顶点A关于x轴对称的点A′的坐标( , ),顶点C关于y轴对称的点C′的坐标( , ).
(3)求△ABC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,Rt△ABC纸片中,∠C=90°,AC=3,BC=4,点D在边BC上,以AD为折痕将△ABD折叠得到△AB’D,AB'与边BC交于点E.若△DEB’为直角三角形,则BD的长是________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.
(1)求抛物线的解析式;
(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;
(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】(12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com