相关习题
 0  357343  357351  357357  357361  357367  357369  357373  357379  357381  357387  357393  357397  357399  357403  357409  357411  357417  357421  357423  357427  357429  357433  357435  357437  357438  357439  357441  357442  357443  357445  357447  357451  357453  357457  357459  357463  357469  357471  357477  357481  357483  357487  357493  357499  357501  357507  357511  357513  357519  357523  357529  357537  366461 

科目: 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a0)经过点A(3,0),B(﹣1,0),C(0,﹣3).

(1)求该抛物线的解析式;

(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;

(3)若点Qx轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,等腰ABC中,AB=AC,∠ACB=72°

1)若BDACD,求∠ABD的度数;

2)若CE平分∠ACB,求证:AE=BC

查看答案和解析>>

科目: 来源: 题型:

【题目】知识背景

a0x0时,因为(20,所以x﹣2+0,从而x+(当x=时取等号).

设函数y=x+(a0,x0),由上述结论可知:当x=时,该函数有最小值为2

应用举例

已知函数为y1=x(x0)与函数y2=(x0),则当x==2时,y1+y2=x+有最小值为2=4.

解决问题

(1)已知函数为y1=x+3(x﹣3)与函数y2=(x+3)2+9(x﹣3),当x取何值时,有最小值?最小值是多少?

(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租货使用成本最低?最低是多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】中,垂直平分,分别交于点垂直平分,分别交于点

⑴如图①,若,求的度数;

⑵如图②,若,求的度数;

⑶若,直接写出用表示大小的代数式.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点EEHDF,垂足为H,EH的延长线交DC于点G.

(1)猜想DGCF的数量关系,并证明你的结论;

(2)过点HMNCD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点PMN上一点,求△PDC周长的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知在等腰直角ABC中,∠BAC90°,点D从点B出发沿射线BC方向移动.在AD右侧以AD为腰作等腰直角ADE,∠DAE90°.连接CE

1)求证:ACE≌△ABD

2)点D在移动过程中,请猜想CECDDE之间的数量关系,并说明理由;

3)若AC,当CD1时,结合图形,请直接写出DE的长

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,AD是高,CE是中线,DG垂直平分CE连接DE

1)求证:DCBE

2)若∠AEC72°,求∠BCE的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】在一次研究性学习活动中,同学们看到了工人师傅在木板上画一个直角三角形的过程(如图所示):画线段AB,过点A任作一条直线l,以点A为圆心,以AB长为半径画弧,与直线l相交于两点CD,连接BCBD.则BCD就是直角三角形.

1)请你说明BCD是直角三角形的道理;

2)请利用上述方法作一个直角三角形,使其中一个锐角为60°(不写作法,保留作图

痕迹,在图中注明60°的角).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC中,AD平分∠BACDGBC且平分BCDEABEDFACF

1)说明BE=CF的理由;

2)如果AB=5AC=3,求AEBE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】绿水青山就是金山银山,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:

村庄

清理养鱼网箱人数/

清理捕鱼网箱人数/

总支出/

A

15

9

57000

B

10

16

68000

(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;

(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?

查看答案和解析>>

同步练习册答案