相关习题
 0  358371  358379  358385  358389  358395  358397  358401  358407  358409  358415  358421  358425  358427  358431  358437  358439  358445  358449  358451  358455  358457  358461  358463  358465  358466  358467  358469  358470  358471  358473  358475  358479  358481  358485  358487  358491  358497  358499  358505  358509  358511  358515  358521  358527  358529  358535  358539  358541  358547  358551  358557  358565  366461 

科目: 来源: 题型:

【题目】如图,△DAC和△EBC均是等边三角形,AEBD分别与CDCE交于点MN,且ACB在同一直线上,有如下结论:①△ACE≌△DCB;②CMCN;③ACDN;④PC平分∠APB;⑤∠APD60°,其中正确结论有(

A.①②③④⑤B.①②④⑤C.①②③⑤D.①②⑤

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数y=﹣2x24x+6

1)求出函数的顶点坐标、对称轴以及描述该函数的增减性.

2)求抛物线与x轴交点和y轴交点坐标;并画出它的大致图象

3)当2x4时.求函数y的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=﹣1,与x轴的一个交点是A(﹣3,0)其图象的一部分如图所示,对于下列说法:①2a=b;②abc>0,③若点B(﹣2,y1),C(﹣,y2)是图象上两点,则y1<y2;④图象与x轴的另一个交点的坐标为(1,0).其中正确的是_____(把正确说法的序号都填上)

查看答案和解析>>

科目: 来源: 题型:

【题目】某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),Pt之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Qt之间满足如下关系:Q=

(1)当8<t≤24时,求P关于t的函数解析式;

(2)设第t个月销售该原料药的月毛利润为w(单位:万元)

①求w关于t的函数解析式;

②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=﹣2x2+4x与x轴的另一个交点为A,现将抛物线向右平移m(m2)个单位长度,所得抛物线与x轴交于C,D,与原抛物线交于点P,设PCD的面积为S,则用m表示S正确的是(  )

A. (m2﹣4) B. m2﹣2 C. (4﹣m2 D. 2﹣m2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,二次函数y=ax2+bx+ca≠0)的图象与x轴交于点AB两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(10),则下列结论:①AB=4②b2﹣4ac0③ab0④a2﹣ab+ac0,其中正确的结论有(  )个

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】泰勒斯是古希腊哲学家,相传他利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B是观察点,船AB的正前方,过BAB的垂线,在垂线上截取任意长BDCBD的中点,观察者从点D沿垂直于BDDE方向走,直到点E、船A和点C在一条直线上,那么△ABC≌△EDC,从而量出DE的距离即为船离岸的距离AB,这里判定△ABC≌△EDC的方法是(  )

A.SASB.ASAC.AASD.SSS

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数y=ax2+bx+ca≠0)的图象如图所示,有下列5个结论:①abc0②ba+c③4a+2b+c0④2c3b⑤a+bmam+b)(m≠1且为实数),其中正确的个数是( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知正比例函数和反比例函数的图象都经过点A(﹣3,﹣3).

(1)求正比例函数和反比例函数的表达式;

(2)把直线OA向上平移后与反比例函数的图象交于点B(﹣6,m),与x轴交于点C,求m的值和直线BC的表达式;

(3)在(2)的条件下,直线BCy轴交于点D,求以点A,B,D为顶点的三角形的面积;

(4)在(3)的条件下,点A,B,D在二次函数的图象上,试判断该二次函数在第三象限内的图象上是否存在一点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】RtABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.

(1)如图,点D在线段CB上,四边形ACDE是正方形.

①若点GDE中点,求FG的长.

②若DG=GF,求BC的长.

(2)已知BC=9,是否存在点D,使得DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.

查看答案和解析>>

同步练习册答案