相关习题
 0  358499  358507  358513  358517  358523  358525  358529  358535  358537  358543  358549  358553  358555  358559  358565  358567  358573  358577  358579  358583  358585  358589  358591  358593  358594  358595  358597  358598  358599  358601  358603  358607  358609  358613  358615  358619  358625  358627  358633  358637  358639  358643  358649  358655  358657  358663  358667  358669  358675  358679  358685  358693  366461 

科目: 来源: 题型:

【题目】如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.

(1)求出抛物线C1的解析式,并写出点G的坐标;

(2)如图2,将抛物线C1向下平移k(k0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当A′B′G′是等边三角形时,求k的值:

(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).

(1)请在如图所示的网格平面内作出平面直角坐标系;并写出B点坐标;

(2)请作出△ABC关于y轴对称的△A'B'C';

(3)请作出将△ABC向下平移的3个单位,再向右平移5个单位后的△A1B1C1;则点A1的坐标为_____;点B1的坐标为______

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=--x+8x轴,y轴分别交于点A,点B,点Dy轴的负半轴上,若将DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.

(1)AB的长和点C的坐标;

(2)求直线CD的表达式.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.

(1)求这条抛物线的表达式;

(2)求线段CD的长;

(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点My轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】某水果批发市场香蕉的价格如下表

购买香蕉数(千克)

不超过20千克

20千克以上但不超过40千克

40千克以上

每千克的价格

6元

5元

4元

张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?

查看答案和解析>>

科目: 来源: 题型:

【题目】某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨含12吨时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元2月份用水20吨,交水费32元

1求每吨水的政府补贴优惠价和市场调节价分别是多少元;

2设每月用水量为吨,应交水费为元,写出之间的函数关系式;

3小黄家3月份用水26吨,他家应交水费多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.

(1)求抛物线的解析式;

(2)当点P运动到什么位置时,△PAB的面积有最大值?

(3)过点Px轴的垂线,交线段AB于点D,再过点PPEx轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两车同时从城出发驶向城,甲车到达城后立即返回.如图它们离城的距离(千米)与行驶时间(小时)之间的函数图象.

1)求甲车行驶过程中的函数解析式,并写出自变量的取值范围;

2)求相遇时间和乙车速度;

3)在什么时间段内甲车在乙车前面?

查看答案和解析>>

科目: 来源: 题型:

【题目】11·漳州)(满分8分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:

1)请将以上两幅统计图补充完整;

2)若一般优秀均被视为达标成绩,则该校被抽取的学生中有_ ▲ 人达标;

3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.

(1)求抛物线C1的表达式;

(2)直接用含t的代数式表示线段MN的长;

(3)当AMN是以MN为直角边的等腰直角三角形时,求t的值;

(4)在(3)的条件下,设抛物线C1y轴交于点P,点My轴右侧的抛物线C2上,连接AMy轴于点k,连接KN,在平面内有一点Q,连接KQQN,当KQ=1且∠KNQ=BNP时,请直接写出点Q的坐标.

查看答案和解析>>

同步练习册答案