科目: 来源: 题型:
【题目】如图,AB∥EF,则∠A、∠C、∠D、∠E满足的数量关系是( )
![]()
A. ∠A+∠C+∠D+∠E=360°B. ∠A-∠C+∠D+∠E=180°
C. ∠E-∠C+∠D-∠A=90°D. ∠A+∠D=∠C+∠E
查看答案和解析>>
科目: 来源: 题型:
【题目】小贤与小杰在探究某类二次函数问题时,经历了如下过程:
求解体验
(1)已知抛物线
经过点(-1,0),则
= ,顶点坐标为 ,该抛物线关于点(0,1)成中心对称的抛物线的表达式是 .
抽象感悟
我们定义:对于抛物线
,以
轴上的点
为中心,作该抛物线关于
点
对称的抛物线
,则我们又称抛物线
为抛物线
的“衍生抛物线”,点
为“衍生中心”.
(2)已知抛物线
关于点
的衍生抛物线为
,若这两条抛物线有交点,求
的取值范围.
问题解决
(3) 已知抛物线![]()
①若抛物线
的衍生抛物线为
,两抛物线有两个交点,且恰好是它们的顶点,求
的值及衍生中心的坐标;
②若抛物线
关于点
的衍生抛物线为
,其顶点为
;关于点
的衍生抛物线为
,其顶点为
;…;关于点
的衍生抛物线为
,其顶点为
;…(
为
正整数).求
的长(用含
的式子表示).
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在
中,
,
.
(1)如图1,若直线
与
相交于
,过点
作
于
,连接
并延长
至
,使得
,过点
作
于
,证明:
.
(2)如图2,若直线
与
的延长线相交于
,过点
作
于
,连接
并延长
至
,使得
,过点
作
交
的延长线于
,探究:
、
、
之间的数量关系,并证明.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,四边形
是矩形,点
的坐标为
,点
的坐标为
.点
从点
出发,沿
以每秒1个单位长度的速度向点
运动,同时点
从点
出发,沿
以每秒2个单位长度的速度向点
运动,当点
与点
重合时运动停止.设运动时间为
秒.
![]()
(1)当
时,线段
的中点坐标为________;
(2)当
与
相似时,求
的值;
(3)当
时,抛物线
经过
、
两点,与
轴交于点
,抛物线的顶点为
,如图2所示.问该抛物线上是否存在点
,使
,若存在,求出所有满足条件的
点坐标;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,点
为二次函数
图象的顶点,直线
分别交
轴正半轴,
轴于点
,
.
![]()
(1)判断顶点
是否在直线
上,并说明理由.
(2)如图1,若二次函数图象也经过点
,
,且
,根据图象,写出
的取值范围.
(3)如图2,点
坐标为
,点
在
内,若点
,
都在二次函数图象上,试比较
与
的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,我们定义直线
为抛物线
、b、c为常数,
的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.
![]()
已知抛物线
与其“梦想直线”交于A、B两点
点A在点B的左侧
,与x轴负半轴交于点C.
填空:该抛物线的“梦想直线”的解析式为______,点A的坐标为______,点B的坐标为______;
如图,点M为线段CB上一动点,将
以AM所在直线为对称轴翻折,点C的对称点为N,若
为该抛物线的“梦想三角形”,求点N的坐标;
当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数
的图象与
轴交于
、
两点,与
轴交于点
,点
的坐标为
,且当
和
时二次函数的函数值
相等.
(
)求实数
、
的值.
(
)如图
,动点
、
同时从
点出发,其中点
以每秒
个单位长度的速度沿
边向终点
运动,点
以每秒
个单位长度的速度沿射线
方向运动,当点
停止运动时,点
随之停止运动.设运动时间为
秒.连接
,将
沿
翻折,使点
落在点
处,得到
.
①是否存在某一时刻
,使得
为直角三角形?若存在,求出
的值;若不存在,请说明理由.
②设
与
重叠部分的面积为
,求
关于
的函数关系式.
![]()
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】材料一:我们可以将任意三位数记为
,(其中
、
、
分别表示该数的百位数字,十位数字和个位数字,且
),显然
.
材料二:若一个三位数的百位数字,十位数字和个位数字均不为0,则称之为初始数,比如123就是一个初始数,将初始数的三个数位上的数字交换顺序,可产生出5个新的初始数,比如由123可以产生出132,213,231,312,321这5个新初始数,这6个初始数的和成为终止数.
(1)求初始数125生成的终止数;
(2)若一个初始数
,满足
,且
,记
,
,
,若
,求满足条件的初始数的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知关于x的一元二次方程
有实数根.
(1)求m的值;
(2)先作
的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;
(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求
的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com