科目: 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示.下列结论:①方程=ax2+bx+c=0的两个根是x1=﹣1,x2=3:②a﹣b+c=0;③8a+c<0;④当y>0时,x的取值范围是﹣1<x<3;⑤当y随x的增大而增大时,一定有x<O.其中结论正确的个数是( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目: 来源: 题型:
【题目】在图1、2中,已知∠ABC=120°,BD=2,点E为直线BC上的动点,连接DE,以DE为边向上作等边△DEF,使得点F在∠ABC内部,连接BF.
(1)如图1,当BD=BE时,∠EBF= ;
(2)如图2,当BD≠BE时,(1)中的结论是否成立?若成立,请予以证明,若不成立请说明理由;
(3)请直接写出线段BD,BE,BF之间的关系式.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知等腰△ABC,∠BAC=120°,AD⊥BC于D点,点P为BA延长线上一点,点O是线段AD上一点,若AC=AO+AP.
(1)求证:∠APO=∠OCA;
(2)求证:△OCP是等边三角形.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下:
①把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐;
②用被除式的第一项除以除式第一项,得到商式的第一项;
③用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;
④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式.若余式为零,说明这个多项式能被另一个多项式整除.
例如:计算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用竖式除法如图:
所以6x4﹣7x3﹣x2﹣1除以2x+1,商式为3x3﹣5x2+2x﹣1,余式为0.
根据阅读材料,请回答下列问题(直接填空):
![]()
(1)(2x3+x﹣3)÷(x﹣1)= ;
(2)(4x2﹣4xy+y2+6x﹣3y﹣10)÷(2x﹣y+5)= ;
(3)[(x﹣2)(x﹣3)+1]÷(x﹣1)的余式为 ;
(4)x3+ax2+bx﹣15能被x2﹣2x+3整除,则a= ,b= .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x
k)2+h.已知球与O点的水平距离为6m时,达到最高2.6m,球网与O点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )
![]()
A. 球不会过网 B. 球会过球网但不会出界
C. 球会过球网并会出界 D. 无法确定
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点F,BH⊥AB于点B,点M是BC的中点,连接FM并延长交BH于点H.
(1)在图①中,∠ABC=60°,AF=3时,FC= ,BH= ;
(2)在图②中,∠ABC=45°,AF=2时,FC= ,BH= ;
(3)从第(1)、(2)中你发现了什么规律?在图③中,∠ABC=30°,AF=1时,试猜想BH等于多少?并证明你的猜想.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,△ABC和△DEF是两块可完全重合的三角板,
,
.在如图1所示的状态下,△DEF固定不动,将△ABC沿直线a向左平移.
![]()
(1)当△ABC移到图2位置时,连解AF、DC,求证:AF=DC;
(2)若EF=8,在上述平移过程中,试猜想点C距点E多远时,线段AD被直线a垂直平分。并证明你的猜想是正确的。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,点D在边AC上,将△ABD沿BD(对称轴)翻折,点A落在点E处,连接AE,CE.
(1)如图1,当∠AEC=90°时,求证:CD=AD;
(2)当点E落在BC边所在直线上,且∠AEC=60°时.
①猜想△BAE是什么三角形并证明;
②试求线段CD、AD之间的数量关系.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com