科目: 来源: 题型:
【题目】已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=
,BC=16.
(1)如图1,当点P为AB的中点时,求CD的长;
(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.
![]()
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形
的边长为
,点
,
,
分别为
,
,
的中点.现从点
观察线段
,当长度为
的线段
(图中的黑粗线)以每秒
个单位长的速度沿线段
从左向右运动时,
将阻挡部分观察视线,在
区域内形成盲区.设
的左端点从
点开始,运动时间为
秒
.设
区域内的盲区面积为
(平方单位).
![]()
求
与
之间的函数关系式;
请简单概括
随
的变化而变化的情况.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm,如果点P从点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s,连接PQ,设运动时间为t(s)(0<t<4).
(1)当t为何值时,PQ∥BC;
(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由;
(3)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
查看答案和解析>>
科目: 来源: 题型:
【题目】某电信公司给用户提供了两种手机上网计费方式:
方式
:以每分钟0.1元的价格按上网时间计费;
方式
:除收月租费20元外,再以每分钟0.06元的价格按上网时间计费.
假设用户甲一个月手机上网的时间共有
分钟,上网的费用为
元.
(1)分别写出用户甲按
两种方式计费的上网费
元与上网时间分钟
之间的函数关系式;
(2)如果该用户每月通话时间400分钟,选择哪种计费方式更合算?
(3)如果该用户每月上网费为80元,选择哪种计费方式更合算?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标中,反比例函数y=
(x>0)的图象经过点A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD交于点E,连接AD,DC,CB.
(1)求k的值;
(2)求证:DC∥AB;
(3)当AD∥BC时,求直线AB的函数表达式.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图
分别表示
步行与
骑车在同一路上行驶的路程
与
时间的关系,根据图象回答下列问题:
(1)
出发时与
相距 千米;
(2)走了一段路后,
自行车发生故障,进行修理,所用的时间是 小时;
(3)
出发后 小时与
相遇;
(4)求
行走的路程
与时间
的函数关系式.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB表示路灯,CD、C′D′表示小明所在两个不同位置:
(1)分别画出这两个不同位置小明的影子;
(2)小明发现在这两个不同的位置上,他的影子长分别是自己身高的1倍和2倍,他又量得自己的身高为1.5米,DD′长为3米,你能帮他算出路灯的高度吗?(B、D、D′在一条直线上)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.
⑴如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为______cm/s时,在某一时刻也能够使△BPD与△CPQ全等.
⑵若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都按逆时针方向沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于点F,连接BF.
![]()
(1) 求证:CF=AD;
(2) 若CA=CB,∠ACB=90°,试判断四边形CDBF的形状,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com