科目: 来源: 题型:
【题目】阅读下列材料:
小明遇到一个问题:在
中,
,
,
三边的长分别为
、
、
,求
的面积.
小明是这样解决问题的:如图①所示,先画一个正方形网格(每个小正方形的边长为
),再在网格中画出格点
(即
三个顶点都在小正方形的顶点处),从而借助网格就能计算出
的面积.他把这种解决问题的方法称为构图法.
参考小明解决问题的方法,完成下列问题:
(
)图
是一个
的正方形网格(每个小正方形的边长为
) .
①利用构图法在答卷的图
中画出三边长分别为
、
、
的格点
.
②计算①中
的面积为__________.(直接写出答案)
(
)如图
,已知
,以
,
为边向外作正方形
,
,连接
.
①判断
与
面积之间的关系,并说明理由.
②若
,
,
,直接写出六边形
的面积为__________.
![]()
![]()
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】小杰想用6个除颜色外均相同的球设计一个游戏,下面是他设计的4个游戏方案.不成功的是( )
A. 摸到黄球的概率为
,红球的概率为![]()
B. 摸到黄、红、白球的概率都为![]()
C. 摸到黄球的概率为
,红球的概率为
,白球的概率为![]()
D. 摸到黄球的概率为
,摸到红球、白球的概率都是![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】从2,2,3,4四个数中随机取两个数,第一个作为个位上的数字,第二个作为十位上的数字,组成一个两位数,则这个两位数是2的倍数的概率是 ( )
A. 1 B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠B
90°,AB
4,BC
2,以AC为边作△ACE,∠ACE
90°,AC=CE,延长BC至点D,使CD
5,连接DE.求证:△ABC∽△CED.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,点 A,B的坐标分别为(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.
(1)图1中,点C的坐标为 ;
(2)如图2,点D的坐标为(0,1),点E在射线CD上,过点B 作BF⊥BE交y轴于点F.
①当点E为线段CD的中点时,求点F的坐标;
②当点E在第二象限时,请直接写出F点纵坐标y的取值范围.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3 , 已知EF:DF=5:8,AC=24.
(1)求AB的长;
(2)当AD=4,BE=1时,求CF的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】一块材料的形状是锐角三角形ABC,边BC=12cm,高AD=8cm,把它加工成矩形零件如图,要使矩形的一边在BC上,其余两个顶点分别在AB,AC上.且矩形的长与宽的比为3:2,求这个矩形零件的边长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,点E是射线CD上的一个动点(与C、D不重合),将△ADE绕点A顺时针旋转120°后,得到△ABE',连接EE'.
(1)如图1,∠AEE'= °;
![]()
(2)如图2,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;
![]()
(3)如图3,在(2)的条件下,如果CE=2,AE=
,求ME的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】为了探索代数式
的最小值,
小张巧妙的运用了数学思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作
,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则
,
则问题即转化成求AC+CE的最小值.
![]()
(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得
的最小值等于 ,此时x= ;
(2)题中“小张巧妙的运用了数学思想”是指哪种主要的数学思想;
(选填:函数思想,分类讨论思想、类比思想、数形结合思想)
(3)请你根据上述的方法和结论,试构图求出代数式
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的表示的数为________________.
![]()
【答案】
【解析】AC=AM=
=
,∴AM=![]()
【题型】填空题
【结束】
11
【题目】在△ABC中,AB=10,AC=2
,BC边上的高AD=6,则另一边BC等于_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com