相关习题
 0  360000  360008  360014  360018  360024  360026  360030  360036  360038  360044  360050  360054  360056  360060  360066  360068  360074  360078  360080  360084  360086  360090  360092  360094  360095  360096  360098  360099  360100  360102  360104  360108  360110  360114  360116  360120  360126  360128  360134  360138  360140  360144  360150  360156  360158  360164  360168  360170  360176  360180  360186  360194  366461 

科目: 来源: 题型:

【题目】如图,一艘轮船在位于灯塔P的北偏东30°方向,距离灯塔120海里的A处.轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东64°方向上的B处.求轮船所在的B处与灯塔P的距离.(结果精确到0.1海里)(参考数据:sin64°=0.90,cos64°=0.44,tan64°=2.05)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点A在抛物线yx2﹣2x+2上运动,过点AACx轴于点C,以AC为对角线作矩形ABCD,连结BD,则BD的最小值为(  )

A. B. 1 C. D. 2

查看答案和解析>>

科目: 来源: 题型:

【题目】某通信公司策划了两种上网的月收费方式:

收费方式

月使用费/

包时上网时间/

超时费/(元/

30

25

0.05

设每月上网时间为,方式的收费金额分别为(元),(元),如图是之间函数关系的图象.(友情提示:若累计上网时间不超出包时上网时间,则只收月使用费;若累计上网时间超出包时上网时间,则对超出部分再加收超时费)

1

2)求之间的函数解析式;

3)若每月上网时间为31小时,请直接写出选择哪种方式能节省上网费.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,∠DAB=130°,连结OCP是半径OC上的一个动点,连结PDPB,则么DPB的大小可能为(  )

A. 40° B. 80° C. 11 D. 130°

查看答案和解析>>

科目: 来源: 题型:

【题目】已知关于x的方程x2+ax+b=0(b≠0)与x2+cx+d=0都有实数根,若这两个方程有且只有一个公共根,且ab=cd,则称它们互为“同根轮换方程”.如x2-x-6=0与x2-2x-3=0互为“同根轮换方程”.

(1)若关于x的方程x2+4x+m=0与x2-6x+n=0互为“同根轮换方程”,求m的值;

(2)已知方程①:x2+ax+b=0和方程②:x2+2ax+b=0,p、q分别是方程①和方程②的实数根,且p≠q,b≠0.试问方程①和方程②是否能互为“同根轮换方程”?如果能,用含a的代数式分别表示p和q;如果不能,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC中,C=90°AC=6BC=8,动点PA点出发,以1cm/s的速度,沿A—C—BB点运动,同时,动点QC点出发,以2cm/s的速度,沿C—B—AA点运动,当其中一点运动到终点时,两点同时停止运动。设运动时间为t秒,当t=_______秒时,PCQ的面积等于8cm2.

查看答案和解析>>

科目: 来源: 题型:

【题目】若关于x的三个方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m﹣1=0中至少有一个方程有实根,则m的取值范围是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】某水库大坝的横截面是如图所示的四边形BACD,期中ABCD.瞭望台PC正前方水面上有两艘渔船MN,观察员在瞭望台顶端P处观测渔船M的俯角,观测渔船N在俯角,已知NM所在直线与PC所在直线垂直,垂足为点EPE长为30米.

1)求两渔船MN之间的距离(结果精确到1米);

2)已知坝高24米,坝长100米,背水坡AD的坡度.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH的坡度为,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的15倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】9分)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°. 若坡角∠FAE=30°,求大树的高度. (结果保留整数,参考数据:sin48°≈0.74cos48°≈0.67tan48°≈1.11≈1.73

查看答案和解析>>

科目: 来源: 题型:

【题目】假期,六盘水市教育局组织部分教师分别到ABCD四个地方进行新课程培训,教育局按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:

1)若去C地的车票占全部车票的30%,则去C地的车票数量是 张,补全统计图.

2)若教育局采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么余老师抽到去B地的概率是多少?

3)若有一张去A地的车票,张老师和李老师都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1234,乙转盘分成三等份且标有数字789,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给李老师,否则票给张老师(指针指在线上重转).试用列表法树状图的方法分析这个规定对双方是否公平.

查看答案和解析>>

同步练习册答案