相关习题
 0  360347  360355  360361  360365  360371  360373  360377  360383  360385  360391  360397  360401  360403  360407  360413  360415  360421  360425  360427  360431  360433  360437  360439  360441  360442  360443  360445  360446  360447  360449  360451  360455  360457  360461  360463  360467  360473  360475  360481  360485  360487  360491  360497  360503  360505  360511  360515  360517  360523  360527  360533  360541  366461 

科目: 来源: 题型:

【题目】如图,抛物线y=x2+bx+c经过点B30)、C02),直线Ly=xy轴于点E,且与抛物线交于AD两点,P为抛物线上一动点(不与AD重合).

1)求抛物线的解析式;

2)当点P在直线L下方时,过点PPNy轴交L于点N,求PN的最大值.

3)当点P在直线L下方时,过点PPMx轴交L于点M,求PM的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc>0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是_____(填写正确结论的序号).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,有长为24米的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借一段墙体(墙体的最大可用长度a=10m),设AB的长为xm,所围的花圃面积为ym2,则y的最大值是__________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线和x轴交于两点A、B,和y轴交于点C,已知A、B两点的横坐标分别为﹣1,4,ABC是直角三角形,∠ACB=90°,则此抛物线顶点的坐标为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1.有下列结论:①b2=4ac ②abc>0 ③a>c ④4a+c>2b.其中结论正确的个数是(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目: 来源: 题型:

【题目】对于二次函数y=ax2+(﹣2a)x(a<0),下列说法正确的个数是(  )

对于任何满足条件的a,该二次函数的图象都经过点(2,1)和(0,0)两点;

若该函数图象的对称轴为直线x=x0,则必有1<x0<2;

当x0时,y随x的增大而增大;

若P(4,y1),Q(4+m,y2)(m>0)是函数图象上的两点,如果y1>y2总成立,则a≤﹣

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点P为抛物线y=x2上一动点.

(1)若抛物线y=x2是由抛物线y=x+2)2﹣1通过图象平移得到的,请写出平移的过程;

(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点PPMlM

①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.

②问题解决:如图二,若点Q的坐标为(1.5),求QP+PF的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】建立适当的坐标系,运用函数知识解决下面的问题:

如图,是某条河上的一座抛物线形拱桥,拱桥顶部点E到桥下水面的距离EF3米时,水面宽AB6米,一场大雨过后,河水上涨,水面宽度变为CD,且CD=2米,此时水位上升了多少米?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点Ax轴上,点B在直线x=3上,直线x=3x轴交于点C

(1)求抛物线的解析式;

(2)点P从点A出发,以每秒个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.

①当t为何值时,矩形PQNM的面积最小?并求出最小面积;

②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=ax2+bx+cx轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣),顶点为P.

(1)求抛物线解析式;

(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;

(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.

查看答案和解析>>

同步练习册答案