相关习题
 0  360535  360543  360549  360553  360559  360561  360565  360571  360573  360579  360585  360589  360591  360595  360601  360603  360609  360613  360615  360619  360621  360625  360627  360629  360630  360631  360633  360634  360635  360637  360639  360643  360645  360649  360651  360655  360661  360663  360669  360673  360675  360679  360685  360691  360693  360699  360703  360705  360711  360715  360721  360729  366461 

科目: 来源: 题型:

【题目】如图,正方形ABCD是一次函数yx+1图象的其中一个伴侣正方形.

1)若某函数是一次函数yx+1,求它的图象的所有伴侣正方形的边长;

2)若某函数是反比例函数,它的图象的伴侣正方形为ABCD,点D2m)(m2)在反比例函数图象上,求m的值及反比例函数解析式;

3)若某函数是二次函数yax2+ca≠0),它的图象的伴侣正方形为ABCDCD中的一个点坐标为(34).写出伴侣正方形在抛物线上的另一个顶点坐标,写出符合题意的其中一条抛物线解析式,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?.(本小题只需直接写出答案)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=x2+bx+cy轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.

(1)求此抛物线的解析式.

(2)点Px轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】求函数的最值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+cx轴交于点A(﹣10)和点B30),与y轴交于点C,连接BC交抛物线的对称轴于点ED是抛物线的顶点.

1)求此抛物线的解析式;

2)直接写出点C和点D的坐标;

3)若点P在第一象限内的抛物线上,且SABP4SCOE,求P点坐标.注:二次函数yax2+bx+ca≠0)的顶点坐标为.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,将函数y= (x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A′,B′,若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是__________.

查看答案和解析>>

科目: 来源: 题型:

【题目】运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:

 t

 0

 1

 2

 3

 4

 5

 6

 7

 h

 0

 8

 14

 18

 20

 20

 18

 14

下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t;③足球被踢出9.5s时落地:④足球被踢出7.5s时,距离地面的高度是11.25m,其中不正确结论的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a0)的图象如图所示,下列结论:①2a+b0;abc0;b2﹣4ac0;a+b+c0;(a﹣2b+c)0,其中正确的个数是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直角ABC中,∠A90°AB6AC8DE分别是ACBC边的中点,点PA出发沿线段ADDEEB以每秒3个单位长的速度向B匀速运动;点Q从点A出发沿射线AB以每秒2个单位长的速度匀速运动,当点P与点B重合时停止运动,点Q也随之停止运动,设点PQ运动时间是t秒,(t0

1)当t   时,点P到达终点B

2)当点P运动到点D时,求BPQ的面积;

3)设BPQ的面积为S,求出点Q在线段AB上运动时,St的函数关系式;

4)请直接写出PQDBt的值.

查看答案和解析>>

同步练习册答案