科目: 来源: 题型:
【题目】一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.
(1)求口袋中黄球的个数;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,
求两次摸 出都是红球的概率;
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在边长均为1的正方形网格纸上有和,顶点A、B,C,D、E、F均在格点上,如果是由绕着某点O旋转得到的,点的对应点是点D,点C的对应点是点请按要求完成以下操作或运算:
在图上找到点O的位置不写作法,但要标出字母,并写出点O的坐标;
求点B绕着点O顺时针旋转到点E所经过的路径长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在平面直角坐标系中,,,是等腰直角三角形且,把绕点B顺时针旋转,得到,把绕点C顺时针旋转,得到,依此类推,得到的等腰直角三角形的直角顶点的坐标为__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为
S3;则S3﹣S2= .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.
(1)求抛物线的解析式;
(2)作Rt△OBC的高OD,延长OD与抛物线在第一象限内交于点E,求点E的坐标;
(3)①在x轴上方的抛物线上,是否存在一点P,使四边形OBEP是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由;
②在抛物线的对称轴上,是否存在上点Q,使得△BEQ的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知中, , , ,D是AB边的中点,E是AC边上一点,联结DE,过点D作交BC边于点F,联结EF.
(1)如图1,当时,求EF的长;
(2)如图2,当点E在AC边上移动时, 的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出的正切值;
(3)如图3,联结CD交EF于点Q,当是等腰三角形时,请直接写出BF的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,以BC为直径的⊙O交的边AB于E,点D在⊙O上,且DE∥BC,连BD并延长交CA于F,∠CBF=∠A.
(1)求证:CA是⊙O的切线;
(2)若⊙O的半径为2,BD=2BE,则DE长为 (直接写答案).
查看答案和解析>>
科目: 来源: 题型:
【题目】在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.
(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(2)当四边形ABCD是平行四边形时,如图2,已知AC=BD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A(a,﹣)在直线y=﹣上,AB∥y轴,且点B的纵坐标为1,双曲线y=经过点B.
(1)求a的值及双曲线y=的解析式;
(2)经过点B的直线与双曲线y=的另一个交点为点C,且△ABC的面积为.
①求直线BC的解析式;
②过点B作BD∥x轴交直线y=﹣于点D,点P是直线BC上的一个动点.若将△BDP以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,直接写出所有满足条件的点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com