科目: 来源: 题型:
【题目】在菱形
中,
.
![]()
(1)如图1,点
为线段
的中点,连接
,
.若
,求线段
的长.
(2)如图2,
为线段
上一点(不与
,
重合),以
为边向上构造等边三角形
,线段
与
交于点
,连接
,
,
为线段
的中点.连接
,
判断
与
的数量关系,并证明你的结论.
(3)在(2)的条件下,若
,请你直接写出
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,直线
与轴,
轴分别交于点
,
.抛物线
经过点
,将点
向右平移
个单位长度,得到点
.
(1)求点
的坐标和抛物线的对称轴;
(2)若抛物线与线段
恰有一个公共点,结合函数图象,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线
与双曲线
(x>0)交于点
.
![]()
(1)求a,k的值;
(2)已知直线
过点
且平行于直线
,点P(m,n)(m>3)是直线
上一动点,过点P分别作
轴、
轴的平行线,交双曲线
(x>0)于点
、
,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为
.横、纵坐标都是整数的点叫做整点.
①当
时,直接写出区域
内的整点个数;②若区域
内的整点个数不超过8个,结合图象,求m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?
(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形 ABCD 中, G 为 BC 边上一点, BE AG 于 E , DF AG 于 F ,连接 DE .
![]()
(1)求证: ABE DAF ;
(2)若 AF 1,四边形 ABED 的面积为6 ,求 EF 的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在
中
,
,
点P从点B出发,沿折线
运动,当它到达点A时停止,设点P运动的路程为
点Q是射线CA上一点,
,连接
设
,
.
求出
,
与x的函数关系式,并注明x的取值范围;
补全表格中
的值;
x | 1 | 2 | 3 | 4 | 6 |
| ______ | ______ | ______ | ______ | ______ |
以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点,并在x的取值范围内画出
的函数图象:
![]()
在直角坐标系内直接画出
函数图象,结合
和
的函数图象,求出当
时,x的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:
![]()
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”的次数m | 68 | 111 | 136 | 345 | 546 | 701 |
落在“铅笔”的频率 (结果保留小数点后两位) | 0.68 | 0.74 | 0.68 | 0.69 | 0.68 | 0.70 |
(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)
(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;
(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若m为非负整数,且该方程的根都是无理数,求m的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.
(1)求证:CA=CN;
(2)连接DF,若cos∠DFA=
,AN=
,求圆O的直径的长度.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中,正确结论的个数为( )
![]()
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com