相关习题
 0  360982  360990  360996  361000  361006  361008  361012  361018  361020  361026  361032  361036  361038  361042  361048  361050  361056  361060  361062  361066  361068  361072  361074  361076  361077  361078  361080  361081  361082  361084  361086  361090  361092  361096  361098  361102  361108  361110  361116  361120  361122  361126  361132  361138  361140  361146  361150  361152  361158  361162  361168  361176  366461 

科目: 来源: 题型:

【题目】如图,菱形的边长为,点在对角线(在点的左侧),且的最小值为____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数的图像分别交xy轴于点AB,抛物线经过点AB,点P为第四象限内抛物线上的一个动点.

1)求此抛物线对应的函数表达式;

2)如图1所示,过点PPM∥y轴,分别交直线ABx轴于点CD,若以点PBC为顶点的三角形与以点ACD为顶点的三角形相似,求点P的坐标;

3)如图2所示,过点PPQ⊥AB于点Q,连接PB,当△PBQ中有某个角的度数等于∠OAB度数的2倍时,请直接写出点P的横坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,的直径,于点上一点,且,延长至点,连接,使,延长交于点,连结

1)连结,求证:

2)求证:的切线;

3)若,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】第二届“一带一路”国际合作高峰论坛将于20194月在北京举行.为了让恩施特产走出大山,走向世界,恩施一民营企业计划生产甲、乙两种商品共10万件,销住“一带一路”沿线国家和地区.已知3件甲种商品与2件乙种商品的销售收入相同,1件甲种商品比2件乙种商品的销售收入少600元.甲、乙两种商品的销售利润分别为120元和200

1)甲、乙两种商品的销售单价各多少元?

2)市场调研表明:所有商品能全部售出,企业要求生产乙种商品的数量不超过甲种商品数量的,且甲、乙两种商品的销售总收入不低于3300万元,请你为该企业设计一种生产方案,使销售总利润最大.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,∠BAC90°DBC的中点,EAD的中点,过点AAFBCBE的延长线于点F

1)求证:四边形ADCF是菱形;

3)若AC6AB8,求菱形ADCF的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】某货站传送货物的平面示意图如图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带长为

1)求新传送带的长度;

2)如果需要在货物着地点的左侧留出的通道,试判断距离点的货物是否需要挪走,并说明理由.(说明:(1),(2)的计算结果精确到,参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】以矩形的顶点为坐标原点建立平面直角坐标系,使点分别在轴的正半轴上,双曲线的图象经过的中点,且与交于点,过边上一点,把沿直线翻折,使点落在矩形内部的一点处,且,若点的坐标为(24),则的值为______

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形的边长为在正方形外,,过,直线交于点,直线交直线于点,则下列结论正确的是(

;②;③

④若,则

A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】为了创建国家级卫生城区,某社区在九月份购买了甲、乙两种绿色植物共1100盆,共花费了27000元.已知甲种绿色植物每盆20元,乙种绿色植物每盆30元.

1)该社区九月份购买甲、乙两种绿色植物各多少盆?

2)十月份,该社区决定再次购买甲、两种绿色植物.已知十月份甲种绿色植物每盆的价格比九月份的价格优惠,十月份乙种绿色植物每盆的价格比九月份的价格优惠.因创卫需要,该社区十月份购买甲种绿色植物的数量比九月份的数量增加了,十为份购买乙种绿色植物的数量比九月份的数量增加了.若该社区十月份的总花费与九月份的总花费恰好相同,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】若一个三位数的百位上的数字减去十位上的数字等于其个位上的数字,则称这个三位数为“差数”,同时,如果百位上的数字为、十位上的数字为,三位数是“差数”,我们就记:,其中,.例如三位数514.∵,∴514是“差数”,∴

1)已知一个三位数的百位上的数字是6,若是“差数”,,求的值;

2)求出小于300的所有“差数”的和,若这个和为,请判断是不是“差数”,若是,请求出;若不是,请说明理由.

查看答案和解析>>

同步练习册答案