相关习题
 0  361291  361299  361305  361309  361315  361317  361321  361327  361329  361335  361341  361345  361347  361351  361357  361359  361365  361369  361371  361375  361377  361381  361383  361385  361386  361387  361389  361390  361391  361393  361395  361399  361401  361405  361407  361411  361417  361419  361425  361429  361431  361435  361441  361447  361449  361455  361459  361461  361467  361471  361477  361485  366461 

科目: 来源: 题型:

【题目】分块计数法:对有规律的图形进行计数时,有些题可以采用分块计数的方法.

例如:图16个点,图212个点,图318个点,……,按此规律,求图10、图n有多少个点?

我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是      

请你参考以上分块计数法,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:

(1)第5个点阵中有   个圆圈;第n个点阵中有   个圆圈.

(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘成如图所示的频数分布直方图,己知成绩x(单位:分)均满足“50≤x<100”.根据图中信息回答下列问题:

(1)图中a的值为   

(2)若要绘制该样本的扇形统计图,则成绩x在“70≤x<80”所对应扇形的圆心角度数为   度;

(3)此次比赛共有300名学生参加,若将“x80”的成绩记为“优秀”,则获得“优秀“的学生大约有   人:

(4)在这些抽查的样本中,小明的成绩为92分,若从成绩在“50≤x<60”和“90≤x<100”的学生中任选2人,请用列表或画树状图的方法,求小明被选中的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为  

A. 3 B. 2 C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在菱形ABCD中,AC=6,BD=6,EBC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是(  )

A. 6 B. 3 C. 2 D. 4.5

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(m),则不等式组mx﹣2<kx+1<mx的解集为(  )

A. x> B. <x< C. x< D. 0<x<

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直角三角形的直角顶点在坐标原点,OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为(  )

A. y=﹣ B. y=﹣ C. y=﹣ D. y=

查看答案和解析>>

科目: 来源: 题型:

【题目】如图, 已知抛物线的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点 .

(1)求抛物线的解析式和A、B两点的坐标;

(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;

(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标 .

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在中,,对角线相交于点,将直线绕点顺时针旋转一个角度),分别交线段于点,已知,连接.

1)如图①,在旋转的过程中,请写出线段的数量关系,并证明;

2)如图②,当时,请写出线段的数量关系,并证明;

3)如图③,当时,求的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1ABC的边BC在直线l上,ACBC,且AC=BCEFP的边FP也在直线l上,边EF与边AC重合,且EF=FP

1)将EFP沿直线l向左平移到图2的位置时,EPAC于点Q,连接APBQ.猜想并写出BQAP所满足的数量关系,请证明你的猜想;
2)将EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接APBQ.你认为(1)中所猜想的BQAP的数量关系还成立吗?若成立,给出证明;若不成立,请说明理由;
3)若AC=BC=4,设EFP平移的距离为x,当0≤x≤8时,EFPABC重叠部分的面积为S,请写出Sx之间的函数关系式,并求出最大值.

查看答案和解析>>

同步练习册答案