相关习题
 0  361643  361651  361657  361661  361667  361669  361673  361679  361681  361687  361693  361697  361699  361703  361709  361711  361717  361721  361723  361727  361729  361733  361735  361737  361738  361739  361741  361742  361743  361745  361747  361751  361753  361757  361759  361763  361769  361771  361777  361781  361783  361787  361793  361799  361801  361807  361811  361813  361819  361823  361829  361837  366461 

科目: 来源: 题型:

【题目】阅读下面的情景对话,然后解答问题:

老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.

小华:等边三角形一定是奇异三角形!

小明:那直角三角形是否存在奇异三角形呢?

1)根据奇异三角形的定义,请你判断小华提出的命题:等边三角形一定是奇异三角形是真命题还是假命题?

2)在RtABC中,ABcACbBCa,且cba,若RtABC是奇异三角形,求abc

3)如图,AB是⊙O的直径,C是⊙O上一点(不与点AB重合),D是半圆 中点,CD在直径AB的两侧,若在⊙O内存在点E,使AEADCBCE

①求证:ACE是奇异三角形:

②当ACE是直角三角形时,求∠AOC的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,菱形ABCD的边长为2cm,∠DAB60°.点PA点出发,以cm/s的速度,沿ACC作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,PQ都停止运动,设点P运动的时间为ts).

1)对角线AC的长是 cm

2)当P异于AC时,请说明PQBC

3)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,矩形ABCD中,AB5AD3.点ECD上的动点,以AE为直径的⊙OAB交于点F,过点FFGBE于点G

1)若ECD的中点时,证明:FG是⊙O的切线

2)试探究:BE能否与⊙O相切?若能,求出此时DE的长;若不能,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】中,为直径,C上一点.

(Ⅰ)如图①,过点C的切线,与的延长线相交于点P,若,求的大小;

(Ⅱ)如图②,D为弧的中点,连接于点E,连接并延长,与的延长线相交于点P,若,求的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC是等腰直角三角形,∠ACB=90°,点E、F分别是边BC、AC的中点,PAB上一点,以PF为一直角边作等腰直角三角形PFQ,且∠FPQ=90°,若AB=10,PB=1,则QE的值为(  )

A. 3 B. 3 C. 4 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,抛物线x轴于A(-20),B30)两点,交y轴于点C06).

1)写出abc的值;

2)连接BC,点P为第一象限抛物线上一点,过点AADx轴,过点PPDBC于交直线AD于点D,设点P的横坐标为tAD长为h

①求ht的函数关系式和h的最大值(请求出自变量t的取值范围);

②过第二象限点DDEABBC于点E,若DP=CE,时,求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CDABHG为⊙O上一点,连接AGCDK,在CD的延长线上取一点E,使EG=EKEG的延长线交AB的延长线于F

1)求证:EF是⊙O的切线;

2)连接DG,若ACEF时.

①求证:KGD∽△KEG

②若AK=,求BF的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】为做好汉江防汛工作,防汛指挥部决定对一段长为2500m重点堤段利用沙石和土进行加固加宽.专家提供的方案是:使背水坡的坡度由原来的11变为11.5,如图,若CDBACD=4米,铅直高DE=8米.

1)求加固加宽这一重点堤段需沙石和土方数是多少?

2)某运输队承包这项沙石和土的运送工程,根据施工方计划在一定时间内完成,按计划工作5天后,增加了设备,工效提高到原来的1.5倍,结果提前了5天完成任务,问按原计划每天需运送沙石和土多少m3?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点A在∠MON的边ON上,ABOMBAE=OBDEONEAD=AODCOMC

1)求证:四边形ABCD是矩形;

2)若DE=3OE=9,求ABAD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】n是一个两位正整数,且n的个位数字大于十位数字,则称n两位递增数(如133556等).在某次数学趣味活动中,每位参加者需从由数字123456构成的所有的两位递增数中随机抽取1个数,且只能抽取一次.

1)请用列表法或树状图写出所有的等可能性结果,写出所有个位数字是6两位递增数

2)求抽取的两位递增数的个位数字与十位数字之积能被5整除的概率.

查看答案和解析>>

同步练习册答案