科目: 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC相交于点D,过点D作⊙O的切线与AB相交于点E.
(1)求证:DE⊥AB;
(2)若BE=2,BC=6,求⊙O的直径.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一次函数yx+b的图象与x轴,y轴分别交于A,B两点,与反比例函数y(x<0)的图象交于点C(﹣2,2).
(1)求一次函数与反比例函数的表达式;
(2)过点B作x轴的平行线交反比例函数的图象于点D,连接CD.求△BCD的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】“新型冠状病毒肺炎”疫情牵动着亿万国人的心,为进一步加强疫情防控工作,兰州市某学校利用网络平台进行疫情防控知识测试.洪涛同学对九年级1班和2班全体学生的测试成绩数据进行了收集、整理和分析,研究过程中的部分数据如下.
信息一:疫情防控知识测试题共10道题目,每小题10分;
信息二:两个班级的人数均为40人;
信息三:九年级1班成绩频数分布直方图如图,
信息四:九年级2班平均分的计算过程如下,
80.5(分);
信息五:
统计量 班级 | 平均数 | 中位数 | 众数 | 方差 |
九年级1班 | 82.5 | m | 90 | 158.75 |
九年级2班 | 80.5 | 75 | n | 174.75 |
根据以上信息,解决下列问题:
(1)m= ,n= ;
(2)你认为哪个班级的成绩更加稳定?请说明理由;
(3)在本次测试中,九年级1班甲同学和九年级2班乙同学的成绩均为80分,你认为两人在各自班级中谁的成绩排名更靠前?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】问题情境:
在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如 图 1,将:矩形纸片 ABCD 沿对角线 AC 剪开,得到△ABC 和△ACD.并且量得 AB =4cm,AC=8cm.
操作发现:
(1)将图 1 中的△ACD 以点 A 为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图 2 所示的△AC′D,过点 C 作 AC′的平行线,与 DC'的延长线 交于点 E,则四边形 ACEC′的形状是 .
(2)创新小组将图 1 中的△ACD 以点 A 为旋转中心,按逆时针方向旋转,使 B、 A、D 三点在同一条直线上,得到如图 3 所示的△AC′D,连接 CC',取 CC′的中 点 F,连接 AF 并延长至点 G,使 FG=AF,连接 CG、C′G,得到四边形 ACGC′, 发现它是正方形,请你证明这个结论.
实践探究:
(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC 沿着 BD 方向平移,使点 B 与点 A 重合,此时 A 点平移至 A'点,A'C 与 BC′相交于点 H, 如图 4 所示,连接 CC′,试求 tan∠C′CH 的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=﹣x+m(m为常数)的图象与x轴交于A(﹣3,0),与y轴交于点C.以直线x=﹣1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a>0)经过A,C两点,与x轴正半轴交于点B.
(1)求一次函数及抛物线的函数表达式;
(2)P为线段AC上的一个动点(点P与C、A不重合)过P作x轴的垂线与这个二次函数的图象交于点D,连接CD,AD,点P的横坐标为n,当n为多少时,△CDA的面积最大,最大面积为多少?
(3)在对称轴上是否存在一点E,使∠ACB=∠AEB?若存在,求点E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.
(1)求证:AC平分∠DAB;
(2)若AB=6,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;
(3)如图②,连接OD交AC于点G,若=,求cosE的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,李明随机抽查了所住小区x户家庭的月用水量,绘制了下面不完整的统计图:
(1)求x并补全条形统计图;
(2)求这x户家庭的月平均用水量;并估计李明所住小区620户家庭中月用水量低于月平均用水量的家庭户数;
(3)从月用水量为5m3和9m3的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率;
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点,已知反比例函数y=(m<0)与y=x2﹣5在第四象限内围成的封闭图形(包括边界)内的整点的个数为4,则实数m的取值范围为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com