相关习题
 0  362784  362792  362798  362802  362808  362810  362814  362820  362822  362828  362834  362838  362840  362844  362850  362852  362858  362862  362864  362868  362870  362874  362876  362878  362879  362880  362882  362883  362884  362886  362888  362892  362894  362898  362900  362904  362910  362912  362918  362922  362924  362928  362934  362940  362942  362948  362952  362954  362960  362964  362970  362978  366461 

科目: 来源: 题型:

【题目】如图,将直角三角形纸片)沿过点A的直线折叠,使得AC落在AB边上折痕为AD,展开纸片(如图1);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到(如图2),若,则折痕EF的长为(

A.B.C.D.5

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是墙壁上在两条平行线间的边长为的正方形瓷砖,该瓷砖与平行线的较大夹角为,则两条平行线间的距离为(


A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点AADx轴交抛物线于点D.

(1)求此抛物线的表达式;

(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;

(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】小明大学毕业回家乡创业第一期培植盆景与花卉各50盆售后统计盆景的平均每盆利润是160花卉的平均每盆利润是19调研发现:

①盆景每增加1盆景的平均每盆利润减少2;每减少1盆景的平均每盆利润增加2;②花卉的平均每盆利润始终不变.

小明计划第二期培植盆景与花卉共100设培植的盆景比第一期增加x第二期盆景与花卉售完后的利润分别为W1,W2(单位元)

(1)用含x的代数式分别表示W1,W2;

(2)当x取何值时第二期培植的盆景与花卉售完后获得的总利润W最大最大总利润是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.

(1)求k的取值范围;

(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABCD中,EBC上的一点,连接AE,过B点作BHAE,垂足为点H,延长BHCD于点F,连接AF.

(1)求证AE=BF;

(2)若正方形的边长是5,BE=2,求AF的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种).调查结果统计如下:

球类名称

乒乓球

羽毛球

排球

篮球

足球

人数

42

15

33

解答下列问题:

(1)这次抽样调查中的样本是________;

(2)统计表中,________,________;

(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】在同一直角坐标系中,函数和函数(m是常数,且)的图象可能是( )

A. B.

C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,将一块腰长为的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(10),点B在抛物线y=ax2+ax2上.

1)点A的坐标为 ,点B的坐标为 ;抛物线的解析式为

2)设抛物线的顶点为D,求△DBC的面积;

3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在直角坐标系中,直线lxy轴分别交于点A40)、B0)两点,∠BAO的角平分线交y轴于点D C为直线l上一点,以AC为直径的⊙G经过点D,且与x轴交于另一点E

1)求证:y轴是⊙G的切线;

2)求出⊙G的半径r,并直接写出点C的坐标;

3)如图2,若点F为⊙G上的一点,连接AF,且满足∠FEA=45°,请求出EF的长?

查看答案和解析>>

同步练习册答案