科目: 来源: 题型:
【题目】如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,连结BD、CD,BD交直线AC于点E.
(1)当∠CAD=90°时,求线段AE的长.
(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,
①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;
②当时,请直接写出线段AE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】为鼓励下岗工人再就业,某地市政府规定,企业按成本价提供产品给下岗人员自主销售,成本价与出厂价之间的差价由政府承担.老李按照政策投资销售本市生产的一种儿童面条.已知这种儿童面条的成本价为每袋12元,出厂价为每袋16元,每天销售量(袋)与销售单价(元)之间的关系近似满足一次函数:.
(1)老李在开始创业的第1天将销售单价定为17元,那么政府这一天为他承担的总差价为多少元?
(2)设老李获得的利润为(元),当销售单价为多少元时,每天可获得最大利润?
(3)物价部门规定,这种面条的销售单价不得高于24元,如果老李想要每天获得的利润不低于216元,那么政府每天为他承担的总差价最少为多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校从甲、乙两名班主任中选拔一名参加教育局组织的班主任技能比赛,选拔内容分案例分析、班会设计、才艺展示三个项目,选拔比赛结束后,统计这两位班主任成绩并制成了如图所示的条形统计图:
(1)乙班班主任三个项目的成绩中位数是 ;
(2)用6张相同的卡片分别写上甲、乙两名班主任的六项成绩,洗匀后,从中任意抽取一张,求抽到的卡片写有“80”的概率;
(3)若按照图12所示的权重比进行计算,选拔分数最高的一名班主任参加比赛,应确定哪名班主任获得参赛资格,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在菱形中,,点是对角线上一动点,将线段绕点顺时针旋转120°到,连接,连接并延长,分别交于点.
(1)求证:;
(2)已知,若的最小值为,求菱形的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC经过平移后得到△A1B1C1,已知点C的对应点C的坐标为(4,﹣1),画出△A1B1C1并写出顶点A,B对应点A1,B1的坐标;
(2)将△ABC绕着点O按顺时针方向旋转90°得到△A2B2C2,画出△A2B2C2.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,等腰的一个锐角顶点是上的一个动点,,腰与斜边分别交于点,分别过点作的切线交于点,且点恰好是腰上的点,连接,若的半径为4,则的最大值为:( )
A.B.C.6D.8
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直角坐标系中,抛物线与y轴交于点D(0,3).
(1)直接写出c的值;
(2)若抛物线与x轴交于A、B两点(点B在点A的右边),顶点为C点,求直线BC的解析式;
(3)已知点P是直线BC上一个动点,
①当点P在线段BC上运动时(点P不与B、C重合),过点P作PE⊥y轴,垂足为E,连结BE.设点P的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
②试探索:在直线BC上是否存在着点P,使得以点P为圆心,半径为r的⊙P,既与抛物线的对称轴相切,又与以点C为圆心,半径为1的⊙C相切?如果存在,试求r的值,并直接写出点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】报刊零售点从报社以每份0.30元买进一种晚报,零售点卖出的价格为0.50元,约定卖不掉的报纸可以退还给报社,退还的钱数y(元)与退还的报纸数量k(份)之间的函数关系式如下:当0≤k<30时, y=;当k≥30时,y=0.02k,现经市场调查发现,在一个月中(按30天记数)有20天可卖出150份/天,有10天只能卖出100份/天,而报社规定每天批发给摊点的报纸的数量必须相同.
(1)若该家报刊摊点每天从报社买进的报纸数x份(满足100<x≤150),月毛利润为W元,求W关于x的函数关系式;
(2)当买进多少报纸时,月毛利润最大?为多少?(注:月毛利润=月总销售额-月总成本).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=3.点E在线段BA上从B点以每秒1个单位的速度出发向A点运动,F是射线CD上一动点,在点E、F运动的过程中始终保持EF=5,且CF>BE,点P是EF的中点,连接AP.设点E运动时间为ts.
(1)在点E、F运动的过程中,AP的长度存在一个最小值,当AP的长度取得最小值时,点P的位置应该在 .
(2)当AP⊥EF时,求出此时t的值
(3)以P为圆心作⊙P,当⊙P与矩形ABCD三边所在直线都相切时,求出此时t的值,并指出此时⊙P的半径长.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,已知A(0,1),B(10,1),C(9,4).
(1)在网格中画出过A、B、C三点的圆和直线的图像;
(2)已知P是直线上的点,且△APB是直角三角形,那么符合条件的点P共有 个;
(3)如果直线(k>0)上有且只有二个点Q与点A、点B两点构成直角△ABQ,则k= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com