科目: 来源: 题型:
【题目】如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是( )
A. AE=EF B. AB=2DE
C. △ADF和△ADE的面积相等 D. △ADE和△FDE的面积相等
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数y=a(x﹣1)2+k的图象与x轴交于A,B两点,AB=4,与y轴交于C点,E为抛物线的顶点,∠ECO=135°.
(1)求二次函数的解析式;
(2)若P在第四象限的抛物线上,连接AE交y轴于点M,连接PE交x轴于点N,连接MN,且S△EAP=3S△EMN,求点P的坐标;
(3)过直线BC上两点P,Q(P在Q的左边)作y轴的平行线,分别交抛物线于N,M,若四边形PQMN为菱形,求直线MN的解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,D是BC上一点,且BD=2DC,E是AD的中点,旋转过E点的直线l.
(1)如图1,当l经过C,交AB于G,求证:BG=3AG;
(2)如图2,当l平分△ABC的面积,分别交BC,AC于M,N,求的值;
(3)若AB=8,AC=6,BC=12,且l平分△ABC的周长,分别交BC,AD于M,N,直接写出BM的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中B(﹣1,0),A(0,m),m>0,将线段AB线绕B点逆时针旋转90°得BC,AC的中点为D点.
(1)m=2时,画图并直接写出D点的坐标 ;
(2)若双曲线(x<0)过C,D两点,求反比例的解析式;
(3)在(2)的条件下,点P在C点左侧,且在双曲线上,以CP为边长画正方形CPEF,且点E在x轴上,求P点坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,C是弧AB的中点,弦CD与AB相交于E.
(1)若∠AOD=45°,求证:CE=ED;(2)若AE=EO,求tan∠AOD的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品共用了160元.
(1)求A,B两种商品每件多少元?
(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?
查看答案和解析>>
科目: 来源: 题型:
【题目】为了加强学生安全教育,某市某中学举行了一次“安全知识竞赛”,共有1600名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面的频数分布表和频数分布直方图,解答下列问题:
频数分布表
分组 | 频数 | 频率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 8 | 0.16 |
70.5~80.5 | 12 | 0.24 |
80.5~90.5 | 15 | 0.30 |
90.5~100.5 | a | b |
合计 |
(1)频数分布表中a= ,b= ;
(2)抽取的样本容量是 ,请补全频数分布直方图.
(3)若成绩在80分以上(不含80分)为优秀,则该校成绩没达到优秀的约为多少人?
查看答案和解析>>
科目: 来源: 题型:
【题目】小明在一次数学兴趣小组活动中,对一个数学问题做如下探究:
(问题背景)
如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC、BC、CD之间的数量关系.小明同学探究此问题的思路是:将△BCD绕点D逆时针旋转90°到△AED处,点B、C分别落在点A、E处(如图②),易证点C、A、E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.
(简单应用)
(1)在图①中,若AC=,BC=2,则CD= .
(2)如图③,AB是⊙O的直径,点C、D在⊙O上,,若AB=10,BC=8,求CD的长.
(拓展延伸)
(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=a,BC=b(a<b),求CD的长.(用含a,b的代数式表示).
(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,请直接写出线段PQ与AC的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com