相关习题
 0  363354  363362  363368  363372  363378  363380  363384  363390  363392  363398  363404  363408  363410  363414  363420  363422  363428  363432  363434  363438  363440  363444  363446  363448  363449  363450  363452  363453  363454  363456  363458  363462  363464  363468  363470  363474  363480  363482  363488  363492  363494  363498  363504  363510  363512  363518  363522  363524  363530  363534  363540  363548  366461 

科目: 来源: 题型:

【题目】综合与探究

如图,抛物线经过点A(-2,0)B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接ACBCDBDC,

(1)求抛物线的函数表达式;

(2)△BCD的面积等于△AOC的面积的时,求的值;

(3)(2)的条件下,若点M轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点BDMN为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】综合与实践

动手操作:

第一步:如图1,正方形纸片ABCD沿对角线AC所在直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一直线上,折痕分别为CECF.如图2.

第二步:再沿AC所在的直线折叠,△ACE△ACF重合,得到图3

第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EFFGGMME,如图5,图中的虚线为折痕.

问题解决:

(1)在图5中,∠BEC的度数是 的值是

(2)在图5中,请判断四边形EMGF的形状,并说明理由;

(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形: .

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读以下材料,并按要求完成相应地任务:

莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,Rr分别为外接圆和内切圆的半径,OI分别为其外心和内心,则.

如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.

下面是该定理的证明过程(部分):

延长AI⊙O于点D,过点I⊙O的直径MN,连接DMAN.

∵∠D=∠N∠DMI=∠NAI(同弧所对的圆周角相等)

∴△MDI∽△ANI

①,

如图2,在图1(隐去MDAN)的基础上作⊙O的直径DE,连接BEBDBIIF

∵DE⊙O的直径,∴∠DBE=90°

∵⊙IAB相切于点F∴∠AFI=90°

∴∠DBE=∠IFA

∵∠BAD=∠E(同弧所对圆周角相等)

∴△AIF∽△EDB

②,

任务:(1)观察发现: (用含Rd的代数式表示)

(2)请判断BDID的数量关系,并说明理由;

(3)请观察式子①和式子②,并利用任务(1)(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;

(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为 cm.

查看答案和解析>>

科目: 来源: 题型:

【题目】综合与实践小组开展了测量本校旗杆高度的实践活动,他们制订了测量方案,并利用课余时间完成了实地测量.他们在旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整)

任务一:两次测量AB之间的距离的平均值是 m.

任务二:根据以上测量结果,请你帮助综合与实践小组求出学校学校旗杆GH的高度.

(参考数据:sin25.7°≈0.43cos25.7°≈0.90tan25.7°≈0.48sin31°≈0.52cos31°≈0.86tan31°≈0.60)

任务三:该综合与实践小组在定制方案时,讨论过利用物体在阳光下的影子测量旗杆的高度的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可).

查看答案和解析>>

科目: 来源: 题型:

【题目】某游泳馆推出了两种收费方式.

方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30.

方式二:顾客不购买会员卡,每次游泳付费40.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(),选择方式二的总费用为y2().

(1)请分别写出y1y2x之间的函数表达式.

(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.

查看答案和解析>>

科目: 来源: 题型:

【题目】中华人民共和国第二届青年运动会(简称二青会)将于20198月在山西举行,太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10.各班按测评成绩从高分到低分顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.

请解答下列问题:

(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).

(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(众数中位数,或平均数中的一个方面评价即可).

(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母ABCD的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”“B”的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,菱形ABCD的顶点Bx轴的正半轴上,点A坐标为(-4,0),点D的坐标为(-1,4),反比例函数的图象恰好经过点C,则k的值为______.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt△ABC中,∠ABC=90°AB=BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于AB两点,拱高为78(即最高点OAB的距离为78),跨径为90(AB=90),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AB=AC∠A=30°,直线a∥b,顶点C在直线b上,直线aAB于点D,交AC于点E,若∠1=145°,则∠2的度数是( )

A.30°B.35°C.40°D.45°

查看答案和解析>>

同步练习册答案