科目: 来源: 题型:
【题目】阅读以下材料:
对数的创始人是苏格兰数学家纳皮尔(J. Nplcr,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707-1783年)才发现指数与对数之间的联系.
对数的定义:一般地,若
,那么
叫做以
为底
的对数,记作:
.比如指数式
可以转化为
,对数式
可以转化为
.
我们根据对数的定义可得到对数的一个性质:
;理由如下:
设
,
,则
,![]()
∴
,由对数的定义得![]()
又∵![]()
∴![]()
解决以下问题:
(1)将指数
转化为对数式______;
(2)证明![]()
(3)拓展运用:计算
______.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.
(1)求证:DE∥BC;
(2)若AF=CE,求线段BC的长度.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了 名学生;
(2)将图1、图2补充完整;
(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年春季,莒县某服装商店分两次从批发市场购进同一款服装,数量之比是2:3,且第一、二次进货价分别为每件50元、40元,总共付了6600元的货款.
(1)求第一、二次购进服装的数量分别是多少件?
(2)由于该款服装刚推出时,很受欢迎,按每件60元销售了x件;后来,由于该服装滞销,为了及时处理库存,缓解资金压力,其剩余部分的按每件30元全部售完.当x的值至少为多少时,该服装商店才不会亏本.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图, 抛物线
与
轴交于点A(-1,0),顶点坐标(1,n)与
轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①
;②
;③对于任意实数m,
总成立;④关于
的方程
有两个不相等的实数根.其中结论正确的个数为
![]()
![]()
A. 1 个 B. 2 个 C. 3 个 D. 4 个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知正方形ABCD的边长为6,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①
;②
;③
;④
在以上4个结论中,正确的有( )
![]()
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,… 组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒
个单位长度,则第2019秒时,点P的坐标是( )
![]()
A. (2018,0)B. (2019,
1)C. (2019,1)D. (2018,-1)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点(x1,y1)和(x2,y2)都在函数y=﹣2x+4的图象上.则下列结论正确的是( )
A. 若y1<y2,则x1<x2B. 若y1﹣y2=2,则x1﹣x2=﹣1
C. 可由直线y=2x向上平移4个单位得到D. 与坐标系围成的三角形面积为8
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在菱形ABCD中,
、
、
分别是菱形ABCD的两条对角线长和边长,这时我们把关于
的形如“
”的一元二次方程称为“菱系一元二次方程”.请解决下列问题:
![]()
(1)填空:①当
,
时,
.
②用含
,
的代数式表示
值,
.
(2)求证:关于
的“菱系一元二次方程”
必有实数根;
(3)若
是“菱系一元二次方程”
的一个根,且菱形的面积是25,BE是菱形ABCD的AD边上的高,求BE的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】据统计:从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民于某超市今年5月20日购买1千克猪肉花40元钱.
(1)问:那么今年年初猪肉的价格为每千克多少元?
(2)某超市将进货价为每千克30元的猪肉,按5月20日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降2元,其日销售量就增加40千克,超市为了实现销售猪肉每天有1120元的销售利润,为了尽可能让顾客优惠应该每千克定价为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com