科目: 来源: 题型:
【题目】如图,已知等边三角形ABC,O为△ABC内一点,连接OA,OB,OC,将△BAO绕点B旋转至△BCM.
(1)依题意补全图形;
(2)若OA= ,OB= ,OC=1,求∠OCM的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE
(1)求证:直线CG为⊙O的切线;
(2)若点H为线段OB上一点,连接CH,满足CB=CH;
①求证:△CBH∽△OBC;
②求OH+HC的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在中,
(1)作AB和BC的垂直平分线交于点O;
(2)以点O为圆心,OA长为半径作圆;
(3)⊙O分别与AB和BC的垂直平分线交于点M,N;
(4)连接AM,AN,CM,其中AN与CM交于点P.
根据以上作图过程及所作图形,下列四个结论中,
①; ②;
③点O是的外心 ; ④点P是的内心.
所有正确结论的序号是___________.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列是关于四个图案的描述.
图1所示是太极图,俗称“阴阳鱼”,该图案关于外圈大圆的圆心中心对称;
图2所示是一个正三角形内接于圆;
图3所示是一个正方形内接于圆;
图4所示是两个同心圆,其中小圆的半径是外圈大圆半径的三分之二.
这四个图案中,阴影部分的面积不小于该图案外圈大圆面积一半的是( )
A.图1和图3B.图2和图3C.图2和图4D.图1和图4
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,对于点P(x,y),如果点Q(x,y′)的纵坐标满足y′=,那么称点Q为点P的“关联点”.
(1)请直接写出点(3,5)的“关联点”的坐标 ;
(2)如果点P在函数y=x﹣2的图象上,其“关联点”Q与点P重合,求点P的坐标;
(3)如果点M(m,n)的“关联点”N在函数y=2x2的图象上,当0≤m≤2时,求线段MN的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.
(1)当MN∥B′D′时,求α的大小.
(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,曲线BC是反比例函数y=(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),抛物线y=﹣x2+2bx的顶点记作A.
(1)求k的值.
(2)判断点A是否可与点B重合;
(3)若抛物线与BC有交点,求b的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,等边△ABC的边长为3cm,点N在AC边上,AN=1cm.△ABC边上的动点M从点A出发,沿A→B→C运动,到达点C时停止.设点M运动的路程为xcm,MN的长为ycm.
小西根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小西的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了y与x的几组对应值;
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
y/cm | 1 | 0.87 | 1 | 1.32 | 2.18 | 2.65 | 2.29 | 1.8 | 1.73 | 1.8 | 2 |
(2)在平面直角坐标系中,描出补全后的表中各组数值所对应的点,画出该函数的图象;
(3) 结合函数图象,解决问题:当MN=2cm时,点M运动的路程为 cm.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数
(1)将其化成的形式_______________;
(2)顶点坐标_________对称轴方程_______________;
(3)用五点法画出二次函数的图象;
(4) 当时,写出的取值范围
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,对称轴为直线x=1的抛物线y=-x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点B的坐标为(-1,0)
(1)求抛物线的解析式;
(2)点D的坐标为(0,1),点P是抛物线上的动点,若△PCD是以CD为底的等腰三角形,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com