科目: 来源: 题型:
【题目】如图,等边三角形ABC的边长为cm,在AC,BC边上各取一点E,F,使得AE=CF,连接AF,BE相交于点P.(1)则∠APB=______度;(2)当点E从点A运动到点C时,则动点P经过的路径长为________cm.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,函数y=﹣x2+bx+c的部分图象与x轴、y轴的交点分别为A(1,0),B(0,3),对称轴是x=﹣1,在下列结论中,正确的是( )
A.顶点坐标为(﹣1,3)
B.抛物线与x轴的另一个交点是(﹣4,0)
C.当x<0时,y随x的增大而增大
D.b+c=1
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点B在x轴的正半轴上,OB=,AB⊥OB,∠AOB=30°.把△ABO绕点O逆时针旋转150°后得到△A1B1O,则点A的对应点A1的坐标为___.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形ABCD(四边相等、四内角相等)中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=4,BE=DF=3,则EF的平方为( )
A.2B.C.3D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,现给出以下四个结论:(1)AE=CF;(2)△EPF是等腰直角三角形;(3)S四边形AEPF=S△ABC;(4)当∠EPF在△ABC内绕顶点P旋转时始终有EF=AP.(点E不与A、B重合),上述结论中是正确的结论的概率是( )
A.1个B.3个C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.
(1)求证:AD2=DPPC;
(2)请判断四边形PMBN的形状,并说明理由;
(3)如图2,连接AC分别交PM、PB于点E、F.若AD=3DP,探究EF与AE之间的的数量关系.
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)如图1,Rt△ABM和Rt△ADN的斜边分别为正方形的边AB和AD,其中AM=AN,线段MN与线段AD相交于点T,若AD=3AT,则tan∠ABM= ;
(2)如图2,在菱形ABCD中,CD=6,∠ADC=60°,菱形形内部有一动点P,满足S△PAB=S菱形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形ABCD中,P是边AD上的一点,连接BP,CP过点B作射线交线段CP的延长线于点E,交AD边于点M,且使∠ABE=∠CBP,AB=2,BC=5.
(1)证明:△ABM∽△APB;
(2)当AP=3时,求sin∠EBP的值;
(3)如果△EBC是以BC为底边的等腰三角形,求AP的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(3,﹣2)、B(﹣2,n)两点,与x轴交于点C.
(1)求k2,n的值;
(2)请直接写出不等式k1x+b>的解集;
(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A'B、A'C,求△A'BC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点M是正方形ABCD内一点,△MBC是等边三角形,连接AM、MD.对角线BD交CM于点N,现有以下结论:①∠AMD=150°;②MA2=MNMC;③;④,其中正确的结论有____(填写序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com