科目: 来源: 题型:
【题目】课本中有一个例题:
有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?
这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.
我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:
(1)若AB为1m,求此时窗户的透光面积?
(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元
(1)设每件涨价x元,则每星期实际可卖出 件,每星期售出商品的利润y为 元.x的取值范围是 ;
(2)设每件降价m元,则每星期售出商品的利润w为 元;
(3)在涨价的情况下,如何定价才能使每星期售出商品的利润最大?最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知反比例函数y=(k≠0)的图象与一次函数y=k'x+b(k'≠0)的图象相交于A和B两点。
(1)求反比例函数和一次函数的表达式;
(2)观察两函数在同一坐标系中的图象,直接写出关于x的不等式<k'x+b的解集;
(3)求△AOB的面积.(其中O为坐标原点)
查看答案和解析>>
科目: 来源: 题型:
【题目】抛物线上部分点的横坐标,纵坐标的对应值如下表:
… | … | ||||||
… | … |
根据上表填空:
①抛物线与轴的交点坐标是________和________;
②抛物线经过点,________;
③在对称轴右侧,随增大而________;
试确定抛物线的解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数y=x2+bx的图象过点A(4,0),设点C(1,-3),在抛物线的对称轴上求一点P,使|PA-PC|的值最大,则点P的坐标为____________。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(3,0),其部分图象如图所示,下列结论:
①4ac<b2;
②方程ax2+bx+c=0的两个根是x1=-2 x2=3;
③3a+c=0;
④当y>0时,x的取值范围是-1<x<3;
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线(为常数,)经过点,点是轴正半轴上的动点.
(Ⅰ)当时,求抛物线的顶点坐标;
(Ⅱ)点在抛物线上,当,时,求的值;
(Ⅲ)点在抛物线上,当的最小值为时,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,点O是等边△ABC内的任一点,连接OA,OB,OC.
(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.
①∠DAO的度数是 ;
②用等式表示线段OA,OB,OC之间的数量关系,并证明;
(2)设∠AOB=α,∠BOC=β.
①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;
②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.
(1)求与之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB的延长线于点F,∠F=30°,∠BAC=120°,BC=8.
(1)求∠ADB的度数;
(2)求AC的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com