科目: 来源: 题型:
【题目】已知:二次函数y=ax2+bx+(a>0,b<0)的图象与x轴只有一个公共点A.
(1)当a=时,求点A的坐标;
(2)求A点的坐标(只含b的代数式来表示);
(3)过点A的直线y=x+k与二次函数的图象相交于另一点B,当b≥﹣1时,求点B的横坐标m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知四边形ABCD内接于⊙O,∠DAB=90°.
(Ⅰ)如图1,连接BD,若⊙O的半径为6,弧AD=弧AB,求AB的长;
(Ⅱ)如图2,连接AC,若AD=5,AB=3,对角线AC平分∠DAB,求AC的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:如果一元二次方程满足a+b+c=0,我们称这个方程为“凤凰”方程.已知是凤凰方程,且有两个相等的实数根,则下列正确的是( )
A.a=cB.a=bC.b=cD.a=b=c
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:抛物线y=x2﹣2(m﹣1)x﹣1﹣m
(1)当m=2时,求该抛物线的对称轴和顶点坐标;
(2)设该抛物线与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,且满足,求这个抛物线的解析式;
(3)在(2)的条件下,是否存在着直线y=kx+b与抛物线交于点P、Q,使y轴平分△CPQ的面积?若存在,求出k,b应满足的条件;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)求证:BC2=2CDOE;
(3)若,求OE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.
(1)求反比例函数的表达式;
(2)点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正方形ABCD中,E是边CD上一点(点E不与点C,D重合),连接BE.取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.
(1)求证:BE=FG.
(2)连接CM,若CM=1,试求FG的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某区在实施居民用水管理前,随机调查了部分家庭(单位:户)去年的月均用水量(单位:t),并将调查数据进行整理,绘制出如下不完整的统计图表:
月均用水量 | 频数 | 频率 |
0≤x<5 | 6 | 12% |
5≤x<10 | 12 | 24% |
10≤x<15 |
| 32% |
15≤x<20 | 10 | 20% |
20≤x<25 | 4 |
|
25≤x<30 | 2 | 4% |
合计 |
| 100% |
请解答以下问题:
(I)把上面的频数分布表和频数分布直方图补充完整;
(Ⅱ)若该小区有2000户家庭,根据此次随机抽查的数据估计,该小区月均用水量不低于20t的家庭有多少户?
(Ⅲ)为了鼓励节约用水,要确定一个月均用水量的标准,超出该标准的部分按1.5倍价格收费,若要使68%的家庭水费支出不受影响,那么,你觉得家庭月均用水量应定为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com