科目: 来源: 题型:
【题目】如图,抛物线解析式为y=x2,点A1的坐标为(1,1),连接OA1;过A1作A1B1⊥OA1,分别交y轴、抛物线于点P1、B1;过B1作B1A2⊥A1B1分别交y轴、抛物线于点P2、A2;过A2作A2B2⊥B1A2,分别交y轴、抛物线于点P3、B2…;则点Pn的坐标是_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,点P是边AC上一点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,BD平分∠ABC,以下四个结论①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正确的结论的个数( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目: 来源: 题型:
【题目】对实数a,b,定义运算“*”为:a*b=
(1)求函数y=x*(2x﹣1)的解析式;
(2)若点A(x1,y1)、B(x2,y2)(x1<x2)在函数y=x*(2x﹣1)的图象上,且A、B两点关于坐标原点成中心对称,求点A的坐标;
(3)关于x的方程x*(2x﹣1)=m恰有三个互不相等的实数根x1,x2,x3,且x1<x2<x3,设t=x1+2x2+x3+x1x2x3,则t的取值范围是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】问题的提出:
如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和PA+PB+PC的值为最小?
问题的转化:
(1)把ΔAPC绕点A逆时针旋转60度得到连接这样就把确定PA+PB+PC的最小值的问题转化成确定的最小值的问题了,请你利用如图证明:
;
问题的解决:
(2)当点P到锐角△ABC的三项点的距离之和PA+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置:_____________________________;
问题的延伸:
(3)如图是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:方程cx2+bx+a=0是一元二次方程ax2+bx+c=0的倒方程.
(1)已知x=2是x2+2x+c=0的倒方程的解,求c的值;
(2)若一元二次方程ax2﹣2x+c=0无解,求证:它的倒方程也一定无解;
(3)一元二次方程ax2﹣2x+c=0(a≠c)与它的倒方程只有一个公共解,它的倒方程只有一个解,求a和c的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,二次函数y1=x2+bx+c与一次函数y2=x+a交于点A(﹣1,0),B(d,5).
(1)求二次函数y1的解析式;
(2)当y1<y2时,则x的取值范围是 ;
(3)已知点P是在x轴下方的二次函数y1图象的点,求△OAP的面积S的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知Rt△ABC中,∠C=90°,AD是∠BAC的角平分线.
(1)请尺规作图:作⊙O,使圆心O在AB上,且AD为⊙O的一条弦.(不写作法,保留作图痕迹);
(2)判断直线BC与所作⊙O的位置关系,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线:y=ax2+bx+c(a<0)经过A(2,4)、B(﹣1,1)两点,顶点坐标为(h,k),则下列正确结论的序号是 .
①b>1;②c>2;③h<;④k≤1
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知抛物线与轴交于、两点,与轴交于点.
(1)求抛物线的解析式;
(2)点是第一象限内抛物线上的一个动点(与点、不重合),过点作轴于点,交直线于点,连接、.设点的横坐标为,的面积为.求关于的函数解析式及自变量的取值范围,并求出的最大值;
(3)已知为抛物线对称轴上一动点,若是以为直角边的直角三角形,请直接写出点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com