相关习题
 0  365013  365021  365027  365031  365037  365039  365043  365049  365051  365057  365063  365067  365069  365073  365079  365081  365087  365091  365093  365097  365099  365103  365105  365107  365108  365109  365111  365112  365113  365115  365117  365121  365123  365127  365129  365133  365139  365141  365147  365151  365153  365157  365163  365169  365171  365177  365181  365183  365189  365193  365199  365207  366461 

科目: 来源: 题型:

【题目】如图,由点P(14,1),A(,0),B(0,)(),确定的△PAB的面积为18,则的值为_________,如果,则的值为_____________________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,P为平行四边形ABCDAD上一点,E、F分别是PB、PC(靠近点P)的三等分点,△PEF、△PDC、△PAB的面积分别为,若AD=2,AB=,∠A=60°,则的值为(  )

A. B. C. D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】将抛物线向左平移2个单位,再向上平移4个单位得到一个新的抛物线.

1)求新的抛物线的解析式.

2)过作直线,使得直线与新的抛物线仅有一个公共点,求直线的解析式及相应公共点的坐标.

3)请猜想在新的抛物线上是否有且仅有四个点使得分别与(2)中的所有公共点所围成的图形的面积均为S?若有,请求出S并直接写出的坐标,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,线段是⊙的直径,过点作直线交⊙两点,过点作的角平分线交⊙,过的垂线交

1)证明是⊙的切线

2)证明

3)若⊙的直径为10,求

查看答案和解析>>

科目: 来源: 题型:

【题目】为节能减排,某公交公司计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车2辆,B型公交车3辆,共需650万元;若购买A型公交车3辆,B型公交车2辆,共需600万元.

1)求购买A型和B型公交车每辆各需多少万元?

2)预计在该线路上A型和B型公交车每辆年均载客量分别为80万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于830万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,已知点的横坐标为2,将点向右平移2个单位,再向下平移2个单位得到点,且两点均在双曲线上.

1)求反比例函数的解析式.(2)若直线于反比例函数的另一交点为,求的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学为了解七年级400名学生读书情况,随机调查了七年级50名学生读书的册数.统计数据如下表所示:

册数

0

1

2

3

4

人数

3

13

16

17

1

1)求这50个样本数据的平均救,众数和中位数;

2)根据样本数据,估计该校七年级400名学生在本次活动中读书多于3册的人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数的图象如图所示.下列结论:①;②;③;④其中正确的个数有(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线yx轴交于AB两点(点A在点B的左侧),与y轴交于点C

1)点P为线段BC上方抛物线上(不与BC重合)的一动点,连接PCPB,当PBC面积最大时,在y轴找点D,使得PDOD的值最小时,求这个最小值.

2)如图2,抛物线对称轴与x轴交于点K,与线段BC交于点M,在对称轴上取一点R,使得KR12(点R在第一象限),连接BR.已知点N为线段BR上一动点,连接MN,将BMN沿MN翻折到B'MN.当B'MNBMR重叠部分(如图中的MNQ)为直角三角形时,直接写出此时点B'的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在矩形ABCD中,AC为对角线,延长CD至点E使CECA,连接AEFAB上的一点,且BFDE,连接FC

1)若DE1CF,求CD的长;

2)如图2,点G为线段AE的中点,连接BGACH,若∠BHC+ABG60°,求证:AF+CEAC

查看答案和解析>>

同步练习册答案