科目: 来源: 题型:
【题目】某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同.
(1)求甲、乙两种水果的单价分别是多少元?
(2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如今很多初中生喜欢购头饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此某班数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A.白开水,B.瓶装矿泉水,C.碳酸饮料,D.非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题
![]()
(1)这个班级有多少名同学?并补全条形统计图;
(2)若该班同学每人每天只饮用一种饮品(每种仅限一瓶,价格如下表),则该班同学每天用于饮品的人均花费是多少元?
饮品名称 | 白开水 | 瓶装矿泉水 | 碳酸饮料 | 非碳酸饮料 |
平均价格(元/瓶) | 0 | 2 | 3 | 4 |
(3)为了养成良好的生活习惯,班主任决定在饮用白开水的5名班委干部(其中有两位班长记为A,B,其余三位记为C,D,E)中随机抽取2名班委干部作良好习惯监督员,请用列表法或画树状图的方法求出恰好抽到2名班长的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,连接BE、AD,P为BD中点,M为AB中点、N为DE中点,连接PM、PN、MN.
(1)试判断△PMN的形状,并证明你的结论;
(2)若CD=5,AC=12,求△PMN的周长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图为二次函数
图象,直线
与抛物线交于
两点,
两点横坐标分别为
根据函数图象信息有下列结论:
①
;
②若对于
的任意值都有
,则
;
③
;
④
;
⑤当
为定值时若
变大,则线段
变长
其中,正确的结论有__________(写出所有正确结论的番号)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣
x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,根据图形所反映的规律,S2019=( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在
中,
,
,
,动点
从点
出发,沿
方向匀速运动,速度为
;同时,动点
从点
出发,沿
方向匀速运动,速度为
;当一个点停止运动,另一个点也停止运动.设点
,
运动的时间是![]()
![]()
.过点
作
于点
,连接
,
.
![]()
(1)
为何值时,
?
(2)设四边形
的面积为
,试求出
与
之间的关系式;
(3)是否存在某一时刻
,使得
若存在,求出
的值;若不存在,请说明理由;
(4)当
为何值时,
?
查看答案和解析>>
科目: 来源: 题型:
【题目】空间任意选定一点
,以点
为端点,作三条互相垂直的射线
,
,
.这三条互相垂直的射线分别称作
轴、
轴、
轴,统称为坐标轴,它们的方向分别为
(水平向前),
(水平向右),
(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为
,
,
,且
的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体
所在的面与
轴垂直,
所在的面与
轴垂直,
所在的面与
轴垂直,如图1所示.若将
轴方向表示的量称为几何体码放的排数,
轴方向表示的量称为几何体码放的列数,二轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了
排
列
层,用有序数组记作
,如图3的几何体码放了
排
列
层,用有序数组记作
.这样我们就可用每一个有序数组
表示一种几何体的码放方式.
(1)有序数组
所对应的码放的几何体是______________;
A.
B.
C.
D.![]()
(2)图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(______,_______,_______),组成这个几何体的单位长方体的个数为____________个.
![]()
(3)为了进一步探究有序数组
的几何体的表面积公式
,某同学针对若干个单位长方体进行码放,制作了下列表格:
几何体有序数组 | 单位长方体的个数 | 表面上面积为S1的个数 | 表面上面积为S2的个数 | 表面上面积为S3的个数 | 表面积 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
根据以上规律,请直接写出有序数组
的几何体表面积
的计算公式;(用
,
,
,
,
,
表示)
(4)当
,
,
时,对由
个单位长方体码放的几何体进行打包,为了节约外包装材料,我们可以对
个单位长方体码放的几何体表面积最小的规律进行探究,请你根据自己探究的结果直接写出使几何体表面积最小的有序数组,这个有序数组为(______,_______, ______),此时求出的这个几何体表面积的大小为____________(缝隙不计)
查看答案和解析>>
科目: 来源: 题型:
【题目】交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量
(辆
小时)指单位时间内通过道路指定断面的车辆数;速度
(千米
小时)指通过道路指定断面的车辆速度,密度
(辆
千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量
与速度
之间关系的部分数据如下表:
速度v(千米/小时) |
|
|
|
|
|
|
|
|
流量q(辆/小时) |
|
|
|
|
|
|
|
|
(1)根据上表信息,下列三个函数关系式中,刻画
,
关系最准确是_____________________.(只填上正确答案的序号)
①
;②
;③![]()
(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?
(3)已知
,
,
满足
,请结合(1)中选取的函数关系式继续解决下列问题:市交通运行监控平台显示,当
时道路出现轻度拥堵.试分析当车流密度
在什么范围时,该路段将出现轻度拥堵?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com